
      ALAGAPPA UNIVERSITY 
          ( Accredited with ‘A+’ Grade by NAAC (CGPA:3.64) in the Third Cycle 

    And Graded as Category-I University by MHRD-UGC) 

(A State University Established by the Government of Tamilnadu) 

 

KARAIKUDI – 630003 

 

 

      DIRECTORATE OF DISTANCE EDUCATION 
 

 

 

 

MASTER OF COMPUTER APPLICATIONS 

 

 

31533 

 
 

      OBJECT ORIENTED ANALYSIS  

AND DESIGN 
 

 

 

 

 

 

 

 

 

         Copy Right Reserved                                                                          For Private Use only 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

“The Copyright shall be vested with Alagappa University” 

All rights reserved. No part of this publication which is material protected by this copyright notice 

may be reproduced or transmitted or utilized or stored in any form or by any means now known or 

hereinafter invented, electronic, digital or mechanical, including photocopying, scanning, recording 

or by any information storage or retrieval system, without prior written permission from the 

Alagappa University, Karaikudi, Tamil Nadu. 

 

 

 

Author: 

Dr. N. Nagarajan 

Assistant Professor 

Department of Computer Applications 

Alagappa University 

Karaikudi-630003 

Reviewer: 

Dr. P. Prabhu  

Assistant Professor in Information Technology 

Directorate of Distance Education 

Alagappa  University, 

Karaikudi-630003 

         OBJECT ORIENTED ANALYSIS 

AND DESIGN 
         Syllabi – Book Mapping Table 

CONTENT 

Page 

No 

BLOCK 1 – INTRODUCTION 
Unit I – Object oriented System Development: 

Introduction – Object basics – The Object Model: 

Evolution – Elements 

 

 

1-13 

Unit II – Classes and Objects: Object nature – 14-23 



         OBJECT ORIENTED ANALYSIS AND DESIGN 
         Syllabi – Book Mapping Table 

CONTENT Page No 

BLOCK 1 – INTRODUCTION 
Unit I – Object oriented System Development: Introduction – Object basics – 

The Object Model: Evolution – Elements 

 

 

1-13 

Unit II – Classes and Objects: Object nature – Relationship among objects – 

Class nature - Relationship among classes 

 

14-23 

 

Unit III – Classes and Objects: Building quality classes and objects – System 

Development Life Cycle 

 

24-32 

BLOCK 2 – OBJECT ORIENTED METHODOLOGIES 
Unit IV – Methodologies: Rumbaugh Object Modeling Technique, Booch – 

Jacobson- Shaler/Mellor – Coad/ Yardon 

 

33-44 

 

Unit V – Patterns: Patterns- Frameworks                         

 
45-49 

Unit VI – The Unified Approach:  UML – Static and Dynamic model – UML 

diagrams 

 

50- 64 

BLOCK 3 – OBJECT ORIENTED ANALYSIS 
Unit VII – Object Oriented Analysis: Identifying Use cases – Use case Model 

– Documentation 

 

65-72 

Unit VIII – Classification: Identifying classes – Noun phrases Approach – 

Common Class Pattern Approach  

 

73-80 

Unit IX – Use Case Driven Approach: Identifying Object Relationship 

Attributes and Methods 

 

81-87 

BLOCK 4 – OBJECT ORIENTED DESIGN 
Unit X – Object Oriented Design: Introduction – Design Process – Design 

Axioms – Designing Classes – Visibility – Refining Attributes 

 

88 -104 

Unit XI – Designing Methods: Access Layer Design – View Layer Design 105 -131 

 
Unit XII – Managing Analysis and Design: Evaluation Testing – Impact of 

object oriented testing 

 

132-135 

BLOCK 5 – CODING AND MAINTENANCE 
Unit XIII – Coding and Maintenance: Coding – Maintenance – Metrics 

 

136-140 

Unit XIV – Case Study: Foundation Class Library – Client/ Server Computing 

Model question paper 
141-148 

149 

 



  
 

CONTENTS 

BLOCK I: INTRODUCTION        

Unit I: Object Oriented System Development                                                                1-13   

1.0 Introduction  

1.1 Objectives 

 1.1 Object basics  

  1.1.1 Objects are grouped into classes  

  1.1.2 Attributes: Object state and properties 

1.1.3 Object behaviour and methods 

1.1.4 Objects respond to messages 

1.1.5 Encapsulation and information hiding 

1.1.6 Class Hierarchy 

1.1.7 Inheritance 

1.1.8 Polymorphism 

1.1.9 Object Relationships and Associations 

1.1.10 Payroll program 

1.1.11 Structured Approach  

1.1.12 An Object-oriented Approach  

1.1.13 Objects and Persistence 

1.1.14 Meta-Classes 

 1.2 The Object Model 

  1.3  Evolution  

  1.3.1 The Generations of Programming Languages 

1.3.2 Topology of First and Early Second generation PL 

1.3.3 Topology of Late second and early Third generation PL 

1.3.4 Topology of late Third generation PL 

1.3.5 Topology of Object based and Object oriented Programming Languages 

1.4 Foundations of Object Model 

1.4.1 Structured design methods 

1.4.2 Object oriented design methods 

1.5 Elements 

1.5.1 Abstraction 

1.5.2 Encapsulation 

1.5.3 Modularity 

1.5.4 Hierarchy 

1.5.5 Typing 

1.5.6 Concurrency 

1.5.7 Persistence 

 1.6 Answers to check your progress questions 

1.7 Summary  

1.8 Keywords  

1.9 Review Questions  

1.10 Further Readings 

 

Unit II – Classes and Objects                                                                                           14-23 

2.0 Introduction 

2.1 Objectives 

2.2 Nature of an Object 

2.2.1 State   

2.2.2 Behaviour  

2.2.3 Operations  

2.2.4 Roles and Responsibilities  



2.2.5 Identity  

2.3 Relationships among Objects  

2.3.1 Links   

2.3.2 Aggregation 

2.4 The Nature of the class  

2.4.1 Interface and Implementation 

2.5 Relationship among Classes 

2.6 Answers to check your progress questions 

2.7 Summary  

2.8 Keywords  

2.9 Review Questions 

2.10 Further Readings 

 

Unit III – Classes and Objects                                                                                      24-32 

 3.0 Introduction 

 3.1 Objectives 

3.2 Building Quality Classes and Objects 

 3.3 System Development Life Cycle 

  3.3.1 Software Process 

  3.3.2 Software Quality 

  3.3.3 Object-Oriented Systems Development activities 

  3.3.4 Use-case driven systems development 

  3.3.5 Object-Oriented Analysis 

  3.3.6 Object-Oriented Design 

  3.3.7 Prototyping 

  3.3.8 Component-based development (CBD) 

  3.3.9 Rapid Application Development (RAD) 

  3.3.10 Incremental Testing 

  3.3.11 Reusability 

 3.4 Answers to check your progress questions 

 3.5 Summary 

 3.6 Keywords 

 3.7 Review Questions 

 3.8 Further Readings 

 

Block 2 – Object Oriented Methodologies      

Unit IV – Methodologies                                                                                                  33-44 

 

4.0 Introduction 

4.1 Objectives 

4.2 Rumbaugh Object Modeling Techniques 

4.2.1 Object Model 

4.2.2 The OMT Dynamic Model 

4.2.3 The OMT Functional Model 

4.3 Booch Methodology 

4.3.1 Macro development process 

4.3.2 Micro development process 

4.4 Jacobson Methodology 

4.4.1 Object oriented software Engineering: Objectory 

4.4.2 Object Oriented Business Engineering 

4.5 Shaler/Mellor Method   

 4.5.1 Translation 

4.5.2 Semantic decomposition 

4.5.3 Precise action language 



4.5.4 Test and simulation 

4.6 Coad-Yourdon methodology  

4.7 Answers to check your progress questions 

4.8 Summary 

4.9 Keywords 

4.10 Review Questions 

4.11 Further Readings 

 

 

Unit V – Patterns                                                                                                               45-49 

 5.0 Introduction 

 5.1 Objectives 

5.2 Patterns 

 5.3 Patterns templates 

 5.4 Anti patterns 

 5.5 Capturing Patterns 

 5.6 Frameworks 

 5.7 Answers to check your progress questions 

 5.8 Summary 

 5.9 Keywords 

 5.10 Review Questions 

 5.11 Further Readings 

 

UNIT VI: The Unified Approach                                                                                   50-64 

 6.0 Introduction 

 6.1 Objectives 

6.2 Unified Approach 

 6.3 Unified Modelling Language 

 6.4 Static model 

 6.5 Dynamic model 

 6.6 Introduction to UML 

 6.7 UML Class diagram 

 6.8 UML Dynamic Modeling 

 6.9 Package 

 6.10 UML Extensibility  

 6.11 UML Meta-model 

6.12 Answers to check your progress questions 

6.13 Summary 

6.14 Keywords 

6.15 Review Questions 

6.16 Further Readings 

 

BLOCK III: Object Oriented Analysis        
Unit VII: Object Oriented Analysis                                                                               65-72 

7.0 Introduction 

7.1 Objectives 

7.2 Identifying Use Cases 

7.3 Developing Business Processes Modelling 

7.4 Use Case Model  

7.4.1 Use Cases Under the Microscope 

7.4.2 Use Associations 

7.4.3 Identifying the Actors 

7.4.4 Guidelines for Finding Use Cases 



7.4.5 How detailed must a use case be? When to stop decomposing it and when 

to continue 

7.4.6 Dividing use case into package 

7.5 Documentation 

 7.5.1 Guidelines for Effective Documentation 

 7.6 Answers to check your progress questions  

7.7 Summary 

7.8 Keywords 

7.9 Review Questions 

7.10 Further Readings 

 
UNIT VIII: Classification                                                                                                73-80                                                     

8.0 Introduction 

8.1 Objectives  

  8.2 Approaches for Identifying Classes 

 8.3 Noun Phrase Approach 

  8.3.1 Guidelines for selecting classes in an application 

 

8.3.2 Guidelines in selecting candidate classes from the relevant and fuzzy 

categories  

  8.3.3 Initial list of noun classes : in vianet bank 

  8.3.4 Removing irrelevant classes 

8.3.5 Reviewing the Redundant classes and Building a common vocabulary 

8.3.6 Reviewing the class purpose 

8.4 Common Class Patterns Approach 

8.5 Answers to check your progress questions 

8.6 Summary 

8.7 Keywords 

8.8 Review Questions 

8.9 Further Readings 

 

 UNIT IX: Use Case Driven Approach                                                                           81-87 

9.0 Introduction 

9.1 Objectives 

9.2 Association 

9.2.1 Identifying Associations 

9.2.2 Guidelines for Identifying Association 

9.2.3 Common Association Patterns 

9.2.4 Eliminate Unnecessary Associations 

9.3 Super – Sub class Relationships 

9.3.1 Guidelines for Identifying Super-sub Relationships 

9.4 A – Part – of Relationships – Aggregation 

9.4.1 A – Part – of Relationships Patterns 

9.5 Class Responsibility: Identifying Attributes 

9.6 Class Responsibility: Identifying Methods 

9.7 Class Diagram 

9.8 Answers to check your progress questions 

9.9 Summary 

9.10 Keywords 

9.11 Review Questions 

9.12 Further Readings 

 

 

 



BLOCK 4: Object Oriented Design            88 -104 
UNIT X: Object Oriented Design                          

 10.0 Introduction 

 10.1 Objectives 

 10.2 Object-Oriented Design Process and Design Axioms 

10.3 Activities of OOD Process 

10.4 Object Oriented Design Axioms 

10.5 Axioms of OOD 

10.6 Corollaries 

10.6.1 Types of corollaries 

10.7 Design Patterns 

10.8 Introduction to Designing Classes 

10.9 Object oriented design philosophy  

10.10 Designing classes: The Process 

10.11Class visibility: Designing well-defined public, private and protected protocols 

10.12 Designing classes: Refining attributes 

10.13 UML Attribute presentation 

10.14 Designing methods and protocols  

10.15 Design issues- avoiding design pitfall (drawbacks, difficulty)  

10.16 Packages and Managing Classes 

10.17 Answers to check your progress questions 

10.18 Summary 

10.19 Keywords 

10.20 Review Questions 

10.21 Further Readings 

Unit XI – Designing Methods                                                                                                                               105 -131                                    

11.0 Introduction 

11.1 Objectives 

11.2 Access Layer: Object storage and object interoperability 

11.2.1 Object Store and Persistence  

11.3 Database Models 

11.3.1 Hierarchical model  

11.3.2 Network Model  

11.3.3 Relational Model  

11.4 Database Interface  

11.4.1 Database Schema and Data Definition Language  

11.4.2 Data Manipulation Language and Query Capabilities  

11.5 Logical and Physical Database Organization and Access Control  

11.5.1 Shareability and Transactions 

11.5.2 Transactions  

11.5.3 Concurrency Policy  

11.5.4 Concurrency issues  

11.6 Distributed Databases and Client-Server Computing  

11.6.1 Client-Server Computing  

11.7 Distributed and Cooperative Processing  

11.8 Common Object Request Broker Architecture  

11.9 Microsoft’s ActiveX/DCOM  

11.10 Object –Oriented Database Management Systems 

11.10.1 Rules to make object-oriented system  

11.11 Object oriented databases versus Traditional Databases  

11.12 Distributed Databases  

11.13 Object-relational systems  

11.14 Object- Relation Mapping  



11.14.1 Table-class mapping  

11.14.2 Table-multiple classes mapping  

11.14.3 Table – Inherited Classes Mapping 

11.15 Multi database Systems  

11.15.1 ODBC  

11.16 Designing Access Layer Classes  

11.16.1 Advantage of this approach  

11.17 Design the access layer  

11.18 Introduction to View Layer  

11.19 User Interface Design Rules 

11.20 Purpose of View Layer Interface  

11.21 Guidelines for designing Forms and Data Entry Window  

11.22 Guidelines for designing Dialog boxes and Error messages 

11.23 Guidelines for the Command Buttons  

11.24 Application Windows (Main Window) 

11.25 Answers to check your progress questions 

11.26 Summary 

11.27 Keywords  

11.28 Review Questions 

11.29 Further Readings 

 

Unit XII – Managing Analysis and Design                                                                                                       132-135 

12.0 Introduction 

12.1 Objectives 

12.2 Quality Assurance tests 

12.3 Testing Strategies 

12.3.1 Black box testing 

12.3.2 White box testing 

12.3.3 Top Down testing 

12.3.4 Bottom up testing 

12.4 Impact of Object Orientation on Testing 

12.4.1 Reusability of tests 

 12.5 Answers to check your progress questions 

12.6 Summary 

12.7 Keywords 

12.8 Review Questions 

12.9 Further Readings  

 

BLOCK 5: Unit XIII – Coding and Maintenance                             136- 140 

13.0 Introduction 

13.1 Objectives 

13.2 Coding and Maintenance 

13.2.1 Maintenance 

13.3 Object-Oriented Metrics 

13.3.1 Project Metrics 

13.3.2 Product Metrics 

13.3.3 Process Metrics 

 13.4 Answers to check your progress questions 

13.5 Summary 

13.6 Keywords 

13.7 Review Questions 

13.8 Further readings 

 



Unit XIV – Case Study                                                        141-148

 14.0 Introduction 

 14.1 Objectives 

14.2 Foundation Class Library 

 14.2.1 Library Management System 

 14.3 Client/Server Computing 

 

MODEL QUESTION PAPER        149 



 

1 
 

Object Oriented 

Analysis and Design 

 

NOTES 

Self-Instructional Material 

 

BLOCK 1: INTRODUCTION 

 

UNIT I: Object Oriented System Development 
Structure 

 
1.0 Introduction  

1.1 Objectives 

 1.2 Orthogonal view of the software 

 1.3 Object oriented system methodology 

 1.4 Object basics  

  1.4.1 Objects are grouped into classes  

  1.4.2 Attributes: Object state and properties 

1.4.3 Object behaviour and methods 

1.4.4 Objects respond to messages 

1.4.5 Encapsulation and information hiding 

1.4.6 Class Hierarchy 

1.4.7 Inheritance 

1.4.8 Polymorphism 

1.4.9 Object Relationships and Associations 

1.4.10 Payroll program 

1.4.11 Structured Approach  

1.4.12 An Object-oriented Approach  

1.4.13 Objects and Persistence 

1.4.14 Meta-Classes 

 1.5 The Object Model 

  1.6  Evolution  

  1.6.1 The Generations of Programming Languages 

1.6.2 Topology of First and Early Second generation PL 

1.6.3 Topology of Late second and early Third generation 

PL 

1.6.4 Topology of late Third generation PL 

1.6.5 Topology of Object based and Object oriented 

Programming Languages 

1.7 Foundations of Object Model 

1.7.1 Structured design methods 

1.7.2 Object oriented design methods 

1.8 Elements 

1.8.1 Abstraction 

1.8.2 Encapsulation 

1.8.3 Modularity 

1.8.4 Hierarchy 

1.8.5 Typing 

1.8.6 Concurrency 

1.8.7 Persistence 

1.9 Answers to check your progress questions 

1.10 Summary  

1.11 Keywords  

1.12 Review Questions  

1.13 Further Readings 



 

2 
 

Object Oriented 

Analysis and Design 

NOTES 

Self-Instructional Material 

 

1.0 INTRODUCTION 

Software development is dynamic and always undergoing major 

change. Today a vast number of tools and methodologies are available for 

system development. System development refers to all activities that 

go into producing information system solution. System development 

activities consist of system analysis, modeling, design, implementation, 

testing and maintenance. A software development methodology is series 

of processes that, if followed, can lead to the development of an 

application. The original goal based on the system requirements. Further 

we study about the unified approach, which is the methodology used for 

learning about object oriented system development.  

1.1 OBJECTIVES 

After going through this unit, you will be able to:  

 Understand object oriented system development 

 Describe the object basics 

 Understand the evolution and foundation of object model 

 Describe the elements of object model 

1.2 ORTHOGONAL VIEW OF THE SOFTWARE 

A software system is a set of mechanism for performing certain 

action on certain data  

Algorithm + Data structure = Program  

1.3 OBJECT ORIENTED SYSTEM DEVELOPMENT     

METHODOLOGY 

OO development offers a different model from the traditional 

software development approach. This is based on functions and 

procedures. To develop s/w by building self contained modules or objects 

that can be easily replaced, modified and reused. 

In OO environment, s/w is a collection of discrete object that 

encapsulate their data as well as the functionality to model real world 

objects. Each object has attributes (data) and method (function). Objects 

are grouped in to classes and objects are responsible for it. A chart object is 

responsible for things like maintaining its data and labels and even for 

drawing itself. 

Benefits of Object Orientation 

Faster development, 

 Reusability, 

 Increased quality 

Object oriented technology emphasizes modeling the real world and 

provides us with the stronger equivalence of the real world‘s entities 

(objects) than other methodologies. Raising the level of abstraction to the 

point where application can be implemented in the same terms as they are 

described. 



 

3 
 

Object Oriented 

Analysis and Design 

 

NOTES 

Self-Instructional Material 

 

Why object orientation? 

To create sets of objects that work together concurrently to produce 

s/w that better, model their problem domain that similarly system produced 

by traditional techniques.  

It adapts to 

1. Changing requirements 

2. Easier to maintain 

3. More robust 

4. Promote greater design 

5. Code reuse 

 Reasons for why object orientation works 

1. Higher level of abstraction 

2. Seamless transition among different phases of software 

development 

3. Encouragement of good programming techniques 

4. Promotion of reusability 

Overview of the Unified Approach 

The unified approach (UA) is a methodology for software 

development. The UA, based on methodologies by Booch, Rumbaugh, 

Jacobson, and others, tries to combine the best practices, processes, and 

guidelines. UA based on methodologies by Booch, Rumbaugh and 

Jacobson tries to combine the best practices, processes and guidelines 

along with the object management groups in unified modelling language. 

UML is a set of notations and conventions used to describe and model an 

application. UA utilizes the unified modeling language (UML) which is a 

set of notations and conventions used to describe and model an application. 

1.4 OBJECT BASICS 

Object is a combination of logic and data which represents real world 

entity. In an object-oriented system, all are objects. Such as numbers, 

arrays, records, fields, files, forms, etc. 

An Object is represented as anything that can be real or abstract, in 

which we store data and we adopt methods through which the data is 

manipulated. All objects  are  responsible for themselves.  

Example: a) A window object is responsible for things like opening, 

sizing, and closing itself. 

    b) A chart object is responsible for things like maintaining 

its data and labels, and even for drawing itself. 

1.4.1 Objects are grouped into classes  

Classes distinguish objects from one another. A class is a set of 

objects that share a common structure and common behaviour. A single 

object is called an instance of a class. A class can be a specification of 

variables, methods and inheritance of objects. The objective of a class is to 

define the properties and procedures of its objects. 

Example: Class: car, property: colour. 



 

4 
 

Object Oriented 

Analysis and Design 

NOTES 

Self-Instructional Material 

 

 

1.4.2 Attributes: Object state and properties 

The state of an object is represented by Properties. Each property can 

be defined in different ways in a programming language. Example: For a 

colour, it can be represented as text, or through paint, or a video, or an 

image etc. 

1.4.3 Object behaviour and methods 

Behaviour represents the collection of methods. It explains what the 

object is capable of doing. Behaviour of an particular object is described 

by unique procedures. There is no need of writing complex code or 

conditions for deciding a function in an object oriented system because an 

object takes responsibility of its own behaviour.  

1.4.4 Objects respond to messages 

The capability of an object is determined by the methods defined for 

it. Example draw method will tell a chart how to draw itself. For carrying 

out the methods a message is sent to an object and in response to that the 

objects perform operations. Messages are nonspecific function calls.  

1.4.5 Encapsulation and information hiding 

The internal data and procedures of an object are covered or hided 

and interfaces are provided to each object to reveal the necessary inner 

workings is called information hiding. 

For example in C++ encapsulation is provided by public, private and 

protected members. The data and program of an object are encapsulated. 

So the user cannot see the internal side of an object instead can use the 

object by calling its methods. 

1.4.6 Class Hierarchy 

An object-oriented system organizes classes into subclass-super 

hierarchy. At the top of the hierarchy are the most general classes. A 

subclass inherits all of the properties and methods (procedures) defined in 

its super class. Subclasses can filter the state and behaviour inherited from 

its superclass. 

1.4.7 Inheritance 

Inheritance is a relationship between classes where one class is the 

parent class of another (derived) class. Inheritance allows classes to share 

and reuse behaviours and attributes. The real advantage of inheritance is 

that we can build upon what we already have and, reuse what we already 

have. 

 

 

 

 

 



 

5 
 

Object Oriented 

Analysis and Design 

 

NOTES 

Self-Instructional Material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inheritance allows reusability 

1.4.8 Polymorphism 

Poly gives the meaning as “Many” and morph means “form”. In 

object oriented systems, an object can take many different forms. Same 

operation can behave in a different manner in different classes is called 

Polymorphism. Code reusability is done more easily here.  

1.4.9 Object Relationships and Associations 

The relationship between classes and objects are represented as 

Association. They are bidirectional. Cardinality is an important issue in 

association where the number of instances of one class may relate to single 

instance of an associated class. It is described as “one” or “many”. 

 Can Fly                 Flown by              

 

1.4.10 Payroll program 

Consider a payroll program that processes employee records at a 

small manufacturing firm. This company has three types of employees:  

Managers: Receive a regular salary.  

Office Workers: Receive an hourly wage and are eligible for 

overtime after 40 hours. Production Workers: Are paid according to a piece 

rate.  

1.4.11 Structured Approach  

FOR EVERY EMPLOYEE DO  

BEGIN 

IF employee = manager THEN CALL computeManagerSalary 

IF employee = office worker THEN CALL 

computeOfficeWorkerSalary  

IF employee = production worker THEN CALL 

Pilots Plane

s 

Vehicle 

Car 

Ford 

Mustang Taurus Thunderbir

d 



 

6 
 

Object Oriented 

Analysis and Design 

NOTES 

Self-Instructional Material 

 

computeProductionWorkerSalary 

END 

What if we add two new types of employees?  

Temporary office workers are ineligible for overtime, junior 

production workers who receive an hourly wage plus a lower piece rate. 

FOR EVERY EMPLOYEE DO  

BEGIN  

IF employee = manager THEN CALL computeManagerSalary  

IF employee = office worker THEN CALL 

computeOfficeWorker_salary 

IF employee = production worker THEN CALL 

computeProductionWorker_salary 

IF employee=temporary office worker THEN CALL    

   computeTemporaryOfficeWorkerSalary 

IF employee = junior production worker THEN CALL   

    computeJuniorProductionWorkerSalary  

END 

1.4.12 An Object-oriented Approach  

The goal of OO analysis is to identify objects and classes that 

support the problem domain and system’s requirements. Some general 

candidate classes are: Persons Places Things Class Hierarchy Identify class 

hierarchy Identify commonality among the classes Draw the general-

specific class hierarchy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class Hierarchy for payroll application 

 

 Employee 

name 

address 

salary 

SS# 

Office Worker 

 

 

dataEntry 

Compute 

Payroll 

printReport 

Manager 

 

dataEntry 

Compute 

Payroll 

printReport 

 

Production 

worker 

 

dataEntry 

Compute 

Payroll 

printReport 



 

7 
 

Object Oriented 

Analysis and Design 

 

NOTES 

Self-Instructional Material 

 

1.4.13 Objects and Persistence 

Objects have lifetime. An object can persist beyond application 

session boundaries, during which the object is stored in a file or a database, 

in some file or in a database form. 

1.4.14 Meta-Classes 

Everything is an object. A class is also an object. So, if it is an object, 

it must belong to a class. Class belongs to a class called a Meta-Class or a 

class' class. Meta-class is used by the compiler. For example, the meta-

classes handle messages to classes, such as constructors and "new". Rather 

than treat data and procedures separately, object-oriented programming 

packages them into "objects." O-O system provides us with the set of 

objects that closely reflects the underlying application. Advantages of 

object-oriented programming are:  

 The ability to reuse code,  

 Develop more maintainable systems in a shorter amount of 

time. 

 More resilient to change, and 

 More reliable, since they are built from completely tested and 

debugged classes. 

 1.5 OBJECT MODEL 

The elements of Object oriented technology are collectively known 

as object model. It covers the principles of abstraction, encapsulation, 

modularity, hierarchy, typing, concurrency and persistence.  

 

 

 

 

 

 

 

 

 

1.6 THE EVOLUTION OF OBJECT MODEL 

Object oriented development was founded from the best things from 

previous technologies. The development of more programming languages 

has brought these advances.  

1.6.1 The Generations of Programming Languages 

First generation languages (1954-1958): FORTRAN I, ALGOL 60, 

Flowmatic, IPL V.  

These were all based on mathematical expressions. 

Second generation languages (1959-1961): FORTRAN II, ALGOL 

Check Your Progress 

1. Define object oriented technology. 

2. Define UML. 

3. What is an object? 

4. Define Inheritance. 

5. Give the advantages of object oriented 

programming. 



 

8 
 

Object Oriented 

Analysis and Design 

NOTES 

Self-Instructional Material 

 

60, COBOL, Lisp.  

They were based on algorithmic abstractions 

Third generation languages (1962-1970): PL/1, ALGOL 68, Pascal, 

Simula.  

They supported Data abstraction. 

Generation gap (1970-1980): C, FORTRAN 77. Programming 

languages emerged. 

Larger programs were written.  

Object oriented boom (1980-1990): Smalltalk 80, C++, Ada 83, 

Eiffel. 

Pure object oriented language emerged. 

Emergence of Frameworks (1990-today): Visual Basic, Java, Python, 

J2EE, .NET, Visual C#, Visual Basic .NET. They provided enormous 

support to programmers by offering components and services which 

simplifies many complex tasks. 

1.6.2 Topology of First and Early Second generation PL 

Flat physical structures were shown which consisted only of global 

data and subprograms. While designing we can logically separate different 

kinds of data, but there is no programming language support for design 

decisions. These languages contain more amount of cross-coupling among 

subprograms, meanings of data and twisted flow of control etc. So the 

reliability of the system is reduced. 

1.6.3 Topology of Late second and early Third generation 

PL 

The concept of Procedural abstraction, parameter passing was 

supported. Nesting of subprograms, development in control structures and 

scope and visibility of declarations was developed. But large programming 

and data design was not supported. 

1.6.4 Topology of late Third generation PL 

To build large programs modular structure was introduced. But there 

was no support to check for semantics among module interfaces. There 

was no support for data abstraction and error could be detected only during 

execution. 

1.6.5 Topology of Object based and Object oriented 

Programming Languages 

Data driven design emerged. Theories for concept of a type 

appeared.  

1.7 FOUNDATIONS OF OBJECT MODEL 

1.7.1 Structured design methods 

Structured design methods evolved for developers building complex 

systems. Algorithms were used as fundamental building blocks. It uses 

procedural programming language.  



 

9 
 

Object Oriented 

Analysis and Design 

 

NOTES 

Self-Instructional Material 

 

1.7.2 Object oriented design methods 

It used classes and objects as basic building blocks. It used object 

based and object oriented programming languages.  

Object model includes different terminologies such as Object 

Oriented programming, Object oriented design and Object oriented 

analysis. 

Object oriented programming is a method where the programs are 

organized as collection of objects. Each object represents an instance of 

some class and they are members of a hierarchy of classes. 

Object oriented design is a method to encompass the object oriented 

decomposition and it is a notation to depict logical and physical models of 

the system 

Object oriented analysis is a method that verifies the requirements 

from the vision of classes and objects in the problem domain. 

1.8 ELEMENTS OF THE OBJECT MODEL 

A model must have any one of these elements, to be object oriented. 

The four major elements are  

 Abstraction 

 Encapsulation 

 Modularity 

 Hierarchy 

A model can also have these elements which are useful, but not more 

essential in the object model. The three minor elements are − 

 Typing 

 Concurrency 

 Persistence 

1.8.1 Abstraction 

Abstraction focuses on the essential features of an element or object 

in OOP, ignoring its extraneous or accidental properties. The essential 

features are relative to the context in which the object is being used. An 

abstraction denotes the essential characteristics of an object that distinguish 

it from all other kinds of objects and thus provide crisply defined 

conceptual boundaries, relative to the perspective of the viewer. 

Example − When a class Student is designed, the attributes 

enrolment_number, name, course, and address are included while 

characteristics like pulse_rate and size_of_shoe are eliminated, since they 

are irrelevant in the perspective of the educational institution. 

1.8.2 Encapsulation 

Encapsulation binds attributes and methods together within a class. 

Through encapsulation, the internal details of a class can be hidden from 

outside. The class has methods that provide user interfaces by which the 

services provided by the class may be used. 

1.8.3 Modularity 



 

10 
 

Object Oriented 

Analysis and Design 

NOTES 

Self-Instructional Material 

 

Modularity decomposes a problem into a set of modules to reduce 

the overall complexity of the problem. Modularity is the property of a 

system that has been decomposed into a set of cohesive and loosely 

coupled modules. Modularity is linked with encapsulation. Modularity can 

be viewed as a way of mapping encapsulated abstractions into real, 

physical modules having high cohesion within the modules and their inter–

module interaction or coupling is low. 

1.8.4 Hierarchy 

Hierarchy is the ranking or ordering of abstraction. Through 

hierarchy, a system can be made up of interrelated subsystems, which can 

have their own subsystems and so on until the smallest level components 

are reached. Hierarchy allows code reusability. 

The two types of hierarchies in OOA are − 

 “IS–A” hierarchy − It defines the hierarchical relationship in 

inheritance, whereby from a super-class, a number of subclasses 

may be derived which may again have subclasses and so on. For 

example, if we derive a class Rose from a class Flower, we can 

say that a rose “is–a” flower. 

 “PART–OF” hierarchy − It defines the hierarchical relationship 

in aggregation by which a class may be composed of other 

classes. For example, a flower is composed of sepals, petals, 

stamens, and carpel. It can be said that a petal is a “part–of” 

flower. 

1.8.5 Typing 

A type is a characterization of a set of elements. In OOP, a class is 

visualized as a type having properties distinct from any other types. Typing 

is the enforcement of the notion that an object is an instance of a single 

class or type. It also enforces that objects of different types may not be 

generally interchanged; and can be interchanged only in a very restricted 

manner if absolutely required to do so. 

The two types of typing are − 

 Strong Typing − Here, the operation on an object is checked at 

the time of compilation, as in the programming language Eiffel. 

 Weak Typing − Here, messages may be sent to any class. The 

operation is checked only at the time of execution, as in the 

programming language Smalltalk. 

1.8.6 Concurrency 

Concurrency in operating systems allows performing multiple tasks 

or processes simultaneously. When a single process exists in a system, it is 

said that there is a single thread of control. However, most systems have 

multiple threads, some active, some waiting for CPU, some suspended, and 

some terminated. Systems with multiple CPUs inherently permit 

concurrent threads of control; but systems running on a single CPU use 

appropriate algorithms to give equitable CPU time to the threads so as to 

enable concurrency. 



 

11 
 

Object Oriented 

Analysis and Design 

 

NOTES 

Self-Instructional Material 

 

In an object-oriented environment, there are active and inactive 

objects. The active objects have independent threads of control that can 

execute concurrently with threads of other objects. The active objects 

synchronize with one another as well as with purely sequential objects. 

1.8.7 Persistence 

An object occupies a memory space and exists for a particular period 

of time. In traditional programming, the lifespan of an object was typically 

the lifespan of the execution of the program that created it. In files or 

databases, the object lifespan is longer than the duration of the process 

creating the object. This property by which an object continues to exist 

even after its creator ceases to exist is known as persistence. 

 

 

 

 

 

 

 

1.9 ANSWERS TO CHECK YOUR PROGRESS  

      QUESTIONS      

1. Object oriented technology emphasizes modelling the real world 

and provides us with the stronger equivalence of the real world‘s 

entities (objects) than other methodologies. 

2. UML is a set of notations and conventions used to describe and 

model an application. 

3. Object is a combination of logic and data which represents real 

world entity. 

4. Inheritance is a relationship between classes where one class is 

the parent class of another (derived) class. Inheritance allows 

classes to share and reuse behaviours and attributes. 

5. The ability to reuse code, develop more maintainable systems in 

a shorter amount of time, more resilient to change and more 

reliable, since they are built from completely tested and 

debugged classes. 

6. Object oriented analysis is a method that verifies the 

requirements from the vision of classes and objects in the 

problem domain. 

7. Object oriented design is a method to encompass the object 

oriented decomposition and it is a notation to depict logical and 

physical models of the system 

8. Encapsulation binds attributes and methods together within a 

class. 

Check Your Progress 

6. Define object oriented analysis. 

7. What is object oriented design? 

8. Define Encapsulation. 

9. What is typing? 

10. Define Concurrency. 



 

12 
 

Object Oriented 

Analysis and Design 

NOTES 

Self-Instructional Material 

 

9. Typing is the enforcement of the notion that an object is an 

instance of a single class or type. 

10. Concurrency in operating systems allows performing multiple 

tasks or processes simultaneously. 

1.10 SUMMARY  

 A class describes a collection of similar objects. It is a template 

where certain basic characteristics of a set of objects are defined.  

 The notation for an object is the same in basic form as that for a 

class.  

 Objects usually appear as components of a larger program or a 

system.  

 Object is an instance of a class. 

 Objects have lifetime. 

 The main advantage of the object-oriented approach is the ability 

to reuse code and develop more maintainable systems in a shorter 

amount of time. 

 Through the interaction of these objects, functionality of systems 

is achieved. 

 Links and associations are the basic means used for establishing 

relationships among objects and classes of the system.  

 Association and classes are similar in the sense that classes 

describe objects, and association describes links.  

 Multiplicity in an association specifies how many objects 

participate in a relationship. Multiplicity decides the number of 

related objects.  

 Generalization is the relationship between a class, and it defines a 

hierarchy of abstraction in which subclasses (one or more) inherit 

from one or more super classes.  

 Generalization is used to refer to the relationship among classes, 

and inheritance is used for sharing attributes and operations using 

the generalization relationship.  

1.11 KEYWORDS  

Association  

Attributes 

Generalization 

Inheritance 

 Link 

Object 

1.12 REVIEW QUESTIONS  

1. What is system development methodology? 



 

13 
 

Object Oriented 

Analysis and Design 

 

NOTES 

Self-Instructional Material 

 

2. What is object oriented system development methodology? 

3. What are the advantages of object-oriented development? 

4. Describe the components of the unified approach.  

5. What is a class?  Make distinction between attributes and 

operations.  

6. Describe the differences between the notations of class and object 

respectively.  

7. Illustrate the concept of objects and classes with examples.  

8. What is polymorphism? 

9. Explain the concept of communication by message passing. Also 

discuss the advantages of message passing.  

10. How are classes organized in an object-oriented environment? 

11. What is a consumer producer relationship? 

12. Elucidate the concept of link and association with example.  

13. What is a formal class? 

14. What is an instance? 

15. Give the orthogonal views of software. 

1.13 FURTHER READINGS 

 1. Grady Booch, Robert A.Maksimchuk et.al,Object oriented 

analysis and design with Applications, Pearson Education, 3
rd

 Edition, 

2009. 

 2. Object-oriented Software Engineering, TMH Rumbaugh, J. 

(2007),  

 3. Object-oriented Modelling and Design with UML, Pearson 

Education Satzinger,  (2007),   



 

14 
 

Classes and Objects 

 

NOTES 

Self-Instructional Material 

 

UNIT II: CLASSES AND OBJECTS 

Structure 

2.0 Introduction 

2.1 Objectives 

2.2 Nature of an Object 

2.2.1 State   

2.2.2 Behaviour  

2.2.3 Operations  

2.2.4 Roles and Responsibilities  

2.2.5 Identity  

2.3 Relationships among Objects  

2.3.1 Links   

2.3.2 Aggregation 

2.4 The Nature of the class  

2.4.1 Interface and Implementation 

2.5 Relationship among Classes 

2.6 Answers to check your progress questions 

2.7 Summary  

2.8 Keywords  

2.9 Review Questions 

2.10 Further Readings 

2.0 INTRODUCTION 

When we use object-oriented methods to analyze or design a 

complex software system, basic building blocks are classes and objects. In 

this unit we have a detailed a study of the nature of the classes, objects and 

their relationships. 

2.1 OBJECTIVES 

After going through this unit, you will be able to:  

 Understand the nature of the object & class 

 Understand the relationship among objects and classes  

2.2 NATURE OF AN OBJECT 

An object has state, behavior, and identity. The structure and 

behavior of similar objects are defined in their common class.  

2.2.1 State   

The state of an object includes all the properties of the object and the 

current values of each of these properties. For example, consider a vending 

machine that offers soft drinks. The normal behavior of these objects is 

that when someone inserts money in a slot and pushes a button to make a 

selection, a drink emerges from the machine. If a user first makes a 



 

15 
 

Classes and Objects 

 

NOTES 

Self-Instructional Material 

 

selection and then puts money in the slot then those vending machines just 

sit and do nothing because the user has violated the basic assumptions of 

their operation. In another way, the vending machine was waiting for 

money first but the user ignored that and made a selection first. Also 

suppose that the user ignores the warning light that says, “Correct change 

only,” and puts in extra money the vending machine does nothing. Most 

machines are user-hostile; they will take in the excess money. 

A property is an intrinsic characteristic that makes an object unique. 

Properties are always static. All properties have some value which is a 

simple quantity. All objects within a system encapsulate some state.  

 

 

 

 

 

 

Employee class with Attributes 

2.2.2 Behaviour  

Behaviour is how an object will act and react, to its changeable state 

of object affect its behaviour. In vending machine, if we don't deposit 

change sufficient for our selection, then the machine will probably do 

nothing. So behaviour of an object is a function of its state as well as the 

operation performed upon it. The state of an object represents the 

combined results of its behaviour. An operation is some action that one 

object performs on another in order to bring out a reaction. For example, a 

client might initiate the operations append and pop to grow and shrink a 

queue object, respectively. A client might also invoke the operation length, 

which returns a value denoting the size of the queue object but does not 

alter the state of the queue itself. Message passing is one part of the 

equation that defines the behaviour of an object; our definition for 

behaviour also notes that the state of an object affects its behaviour as well.  

2.2.3 Operations  

An operation is a service that a class provides to its clients. A client 

performs five kinds of operations upon an object. The three most common 

kinds of operations are the following:  

 Modifier: An operation that alters the state of an object 

 Selector: An operation that accesses the state of an object but does 

not alter the state.  

 Iterator: An operation that permits all parts of an object to be 

accessed in some well defined order.  

 
Employee 

 Name 

 Social Security Number 

 Department 

 Salary 

Class  Name 

Attributes  



 

16 
 

Classes and Objects 

 

NOTES 

Self-Instructional Material 

 

Two other kinds of operations that represent the infrastructure 

necessary to create and destroy instances of a class are  

 Constructor: An operation that creates an object and/or initializes 

its state. 

 Destructor: An operation that frees the state of an object and/or 

destroys the object itself. 

2.2.4 Roles and Responsibilities  

A role is a mask that an object wears and defines a contract between 

an abstraction and its clients. Responsibilities are meant to convey a sense 

of the purpose of an object and its place in the system. The responsibilities 

of an object are all the services it provides for all of the contracts it 

supports. The state and behaviour of an object collectively define the roles 

that an object may play in the world, which in turn fulfil the abstraction’s 

responsibilities. Examples: 

1. A bank account may have the role of a monetary asset to which 

the account owner may deposit or withdraw money. However, to a 

taxing authority, the account may play the role of an entity whose 

dividends must be reported on annually. 

2. To a trader, a share of stock represents an entity with value that 

may be bought or sold; to a lawyer, the same share denotes a legal 

instrument to which are attached certain rights.  

3. In the course of one day, the same person may play the role of 

mother, doctor, gardener, and movie critic. 

2.2.5 Identity  

Identity is the property of an object which distinguishes it from all 

others. 

Example: Consider a class that denotes a display item. A display 

item is a common abstraction in all GUI-centric systems: It represents the 

base class of all objects that have a visual representation on some window 

and so captures the structure and behaviour common to all such objects. 

Clients expect to be able to draw, select, and move display items, as well 

as query their selection state and location. Each display item has a location 

designated by the coordinates x and y. First declaration creates four names 

and 3 distinct objects in 4 diff location. Item 1 is the name of a distinct 

display item object and other 3 names denote a pointer to a display item 

objects. Item 4 is no such objects, we properly say that item 2 points to a 

distinct display item object, whose name we may properly refer to 

indirectly as * item2. The unique identity (but not necessarily the name) of 

each object in preserved over the lifetime of the object, even when its state 

is changed. Copying, Assignment, and Equality Structural sharing takes 

place when the identity of an object is aliased to a second name. 

 

 

 

 



 

17 
 

Classes and Objects 

 

NOTES 

Self-Instructional Material 

 

 

 

 

 

 

 

2.3 RELATIONSHIPS AMONG OBJECTS  

Objects contribute to the behaviour of a system by collaborating with 

one another. E.g. object structure of an airplane. The relationship between 

any two objects encompasses the assumptions that each makes about the 

other including what operations can be performed. There are two kinds of 

objects relationships are links and aggregation.  

2.3.1 Links   

A link denotes the specific association through which one object (the 

client) applies the services of another object (the supplier) or through 

which are object may navigate to another.  A line between two object icons 

represents the existence of pass along this path.  Messages are shown as 

directed lines representing the direction of message passing between two 

objects is typically unidirectional, may be bidirectional data flow in either 

direction across a link. As a participation in a link, an object may play one 

of three roles:  

 Controller: This object can operate on other objects but is not 

operated on by other objects. In some contexts, the terms active 

object and controller are interchangeable. 

 Server: This object doesn’t operate on other objects; it is only 

operated on by other objects. 

 Proxy: This object can both operate on other objects and be 

operated on by other objects. A proxy is usually created to 

represent a real-world object in the domain of the application. 

Visibility  

Consider two objects, A and B, with a link between the two. In order 

for A to send a message to object B, B must be visible to A. Four ways of 

visibility  

 The supplier object is global to the client 

 The supplier object is a programmer to some operation of the 

client  

 The supplier object is a part of the client object. 

 The supplier object is locally declared object in some operation of 

the client. 

 

 

Check Your Progress 

1. Define State. 

2. Give the kinds of operations. 

3. Define Identity. 



 

18 
 

Classes and Objects 

 

NOTES 

Self-Instructional Material 

 

 Synchronization  

Wherever one object passes a message to another across a link, the 

two objects are said to be synchronized. Active objects embody their own 

thread of control, so we expect their semantics to be guaranteed in the 

presence of other active objects. When one active object has a link to a 

passive one, we must choose one of three approaches to synchronization. 

1. Sequential: The semantics of the passive object are guaranteed 

only in the presence of a single active object at a time.  

2. Guarded: The semantics of the passive object are guaranteed in 

the presence of multiple threads of control, but the active clients 

must collaborate to achieve mutual exclusion.  

3. Concurrent: The semantics of the passive object are guaranteed in 

the presence of multiple threads of control, and the supplier 

guarantees mutual exclusion. 

2.3.2 Aggregation 

Links denote peer to peer or client/supplier relationships, aggregation 

denotes a whole/part hierarchy, with the ability to navigate from the whole 

(also called the aggregate) to its parts. Aggregation is a specialized kind of 

association. Aggregation may or may not denote physical containment. 

E.g. airplane is composed of wings, landing gear, and so on. This is a case 

of physical containment. The relationship between a shareholder and her 

shares is an aggregation relationship that doesn't require physical 

containment. 

2.4 THE NATURE OF THE CLASS  

A class is a set of objects that share a common structure, behaviour 

and semantics. A single object is simply an instance of a class. Object is a 

concrete entity that exists in time and space but class represents only an 

abstraction. An object is not a class. Objects that do not have a common 

structure and behaviour may not be grouped in a class. 

 2.4.1 Interface and Implementation 

 The interface of a class provides its outside view and therefore 

emphasizes the abstraction while hiding its structure and secrets of its 

behaviour. The interface primarily consists of the declarations of all the 

operators applicable to instance of this class, but it may also include the 

declaration of other classes, constants variables and exceptions as needed 

to complete the abstraction. The implementation of a class is its inside 

view, which encompasses the secrets of its behaviour. The implementation 

of a class consists of the class. Interface of the class is divided into 

following four parts.  

 Public: a declaration that is accessible to all clients  

 Protected: a declaration that is accessible only to the class itself 

and its subclasses  

 Private: a declaration that is accessible only to the class itself  



 

19 
 

Classes and Objects 

 

NOTES 

Self-Instructional Material 

 

 Package: a declaration that is accessible only by classes in the 

same package.    

2.5 RELATIONSHIP AMONG CLASSES 

 The relationships between two classes are established for one of two 

reasons. First, a class relationship might indicate some kind of sharing. 

Second, a class relationship might indicate some kind of semantic 

connection. There are four basic kinds of class relationships. They are 

Association, Aggregation, Inheritance (Generalization) and Dependency.  

1. Association: An association is a structural relationship that 

describes a set of links, which is a connection among objects. The 

identification of associations among classes is describing how many 

classes/objects are taking part in the relationship. As an example for a 

vehicle, two of our key abstractions include the vehicle and wheels. 

Multiplicity denotes the cardinality of the association. There are three 

common kinds of multiplicity across an association are: 1. One-to-one 2. 

One-to-many 3. Many-to-many  

 

 

 

 

 

2. Aggregation: An aggregation is a special kind of association, 

representing a structural relationship between a whole and its parts. 

Aggregation relationships among classes have a direct parallel to 

aggregation relationships among the objects corresponding to these classes. 

Aggregation may or may not denote physical containment. E.g. airplane is 

composed of wings, landing gear, and so on. This is a case of physical 

containment. 

 3. Inheritance:  Inheritance, is the most semantically interesting of 

the concrete relationships, exists to express generalization/specialization 

relationships. Inheritance is a relationship among classes wherein one class 

shares the structure and/or behaviour defined in one (single inheritance) or 

more (multiple inheritance) other classes. Inheritance means that 

subclasses inherit the structure of their super class.  

 

 

 

 

 

 

 

 

 

 

 

Single Inheritance: The derived class having only one base class is 

called single inheritance. It is a relationship among classes where in one 

class shares the structure and/or behaviour defined one class. 

Wheel Vehicle 

 
Vehicle 

Car Truck Bus 



 

20 
 

Classes and Objects 

 

NOTES 

Self-Instructional Material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single inheritance 

Multiple Inheritance: The derived class having more than one base 

class is known as multiple inheritance. It is a relationship among classes 

where in one class shares the structure and/or behaviour defined more 

classes.  

 

 

 

 

 

 

 

 

 

 

 

4. Polymorphism: Polymorphism is an ability to take more than 

one form. It is a concept in type theory wherein a name may denote 

instances of many different classes as long as they are related by some 

common super class. Any object denoted by this name is thus able to 

respond to some common set of operations in different ways. With 

polymorphism, an operation can be implemented differently by the classes 

in the hierarchy. Consider the class hierarchy, which has the base class 

DisplayItem along with three subclasses named Circle, Triangle, and 

Person 

 

Name 

Address 

............. 

getname() 

getaddress() 

............... 

 

Student 

Roll number 

Course 

 

getrollno() 

getcourse() 

 

 
Boat House 

Boat House 



 

21 
 

Classes and Objects 

 

NOTES 

Self-Instructional Material 

 

Rectangle. Rectangle also has one subclass, named SolidRectangle. In the 

class DisplayItem, suppose that we define the instance variable theCenter 

(denoting the coordinates for the center of the displayed item), along with 

the following operations: ■ draw: Draw the item. ■ Move: Move the item. 

■ Location: Return the location of the item. The operation location is 

common to all subclasses and therefore need not be redefined, but we 

expect the operations draw and move to be redefined since only the 

subclasses know how to draw and move themselves.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DisplayItem Class Diagram 

 

 

 

 

 

 

 

 

 

 

 

2.6 ANSWERS TO CHECK YOUR PROGRESS  

      QUESTIONS 

 

1. The state of an object includes all the properties of the object 

and the current values of each of these properties. 

2. The three kinds of operations are Modifier, Selector and 

Operator. 

 

DisplayItem 

Circle Triangle Rectangle 

SolidRectangle 

Check Your Progress 

4. Define Links. 

5. What is proxy? 

6. Define Aggregation. 

7. Define Interface. 

8. List the four basic kinds of class relationships. 

 

 



 

22 
 

Classes and Objects 

 

NOTES 

Self-Instructional Material 

 

3. Identity is the property of an object which distinguishes it from 

all others. 

4. A link denotes the specific association through which one 

object (the client) applies the services of another object (the 

supplier) or through which are object may navigate to another. 

5. Proxy object can both operate on other objects and be operated 

on by other objects. A proxy is usually created to represent a 

real-world object in the domain of the application. 

6. Aggregation is a specialized kind of association. Aggregation 

may or may not denote physical containment. 

7. The interface of a class provides its outside view and therefore 

emphasizes the abstraction while hiding its structure and secrets 

of its behaviour. 

8. Four kinds of class relationships are Association, Aggregation, 

Inheritance (Generalization) and Dependency. 

 

2.7 SUMMARY  

 An object has state, behaviour and identity. 

 The structure and behaviour of similar objects are defined in their 

common class. 

 The state of an object includes static and dynamic properties. 

 Behaviour is how an object acts and reacts in state changes and 

message passing. 

 Identity is the property of an object which distinguishes it from all 

others. 

 A class is a set of objects that shares a common structure and 

behaviour. 

 Association, Inheritance and Aggregation are the three kinds of 

relationships. 

2.8 KEYWORDS 

 State  

 Behaviour  

 Constructor  

 Destructor 

 Identity  

 Association 

 Inheritance  

2.9 REVIEW QUESTIONS 

1. Explain the essential characteristics of an object. 

2. What is a state? Explain  



 

23 
 

Classes and Objects 

 

NOTES 

Self-Instructional Material 

 

3. Define Interface. 

4. Write about operations.   

5. Distinguish between links and aggregation. 

6. Explain with example the types of relationships. 

7. Explain the following properties of an association by giving at 

least two examples of each: link attribute, role name, ordering and 

qualification.  

8. What are different types of aggregation? Explain each with 

suitable examples.  

9. What is inheritance? What are different uses of an inheritance? 

Explain.  

10. Define Polymorphism. 

 

2.10 FURTHER READINGS 

Object oriented system development, Ali Bahrami, Tata McGraw 

Hill Edition, 2008 

James Rumbaugh et.al, Object Oriented Modeling and Design, 

Addison Wesley, 2006 



 

24 
 

Classes and Objects 

 
NOTES 

Self-Instructional Material 

 

UNIT III: CLASSES AND OBJECTS 

Structure 

 3.0 Introduction 

 3.1 Objectives 

3.2 Building Quality Classes and Objects 

 3.3 System Development Life Cycle 

  3.3.1 Software Process 

  3.3.2 Software Quality 

  3.3.3 Object-Oriented Systems Development activities 

  3.3.4 Use-case driven systems development 

  3.3.5 Object-Oriented Analysis 

  3.3.6 Object-Oriented Design 

  3.3.7 Prototyping 

  3.3.8 Component-based development (CBD) 

  3.3.9 Rapid Application Development (RAD) 

  3.3.10 Incremental Testing 

  3.3.11 Reusability 

 3.4 Answers to check your progress questions 

 3.5 Summary 

 3.6 Keywords 

 3.7 Review Questions 

 3.8 Further Readings 

 

3.0 INTRODUCTION 

The software development process that consists of analysis, design, 

implementation, testing and refinement is to transform user’s needs into a 

software solution that satisfies those needs. The dynamics of software 

development provide room for shortcuts and bypasses.  In this way, we 

need to spend more time in gathering requirements, developing 

requirements model and an analysis model, and then turning them into the 

design model. Then we can develop code quickly. A prototype is needed to 

be constructed for the key system components, after the products are 

selected. The prototype also gives users a chance to comment on the 

usability and usefulness of the design and let us assess the fit between the 

software tools selected, the functional specification and the user’s needs. 

The man point of this unit is the idea of building software by placing 

emphasis on the analysis and design aspects of the software life cycle. This 

is intended to promote the building of high quality software.   

 

 



 

25 
 

Classes and Objects 

 

NOTES 

Self-Instructional Material 

 

3.1 OBJECTIVES 

After going through this unit, you will be able to:  

 Describes to build quality classes and objects 

 Understand the system development life cycle 

 

3.2 BUILDING QUALITY CLASSES AND OBJECTS 

Object oriented analysis, design, and implementation are an iterative 

process. It is usually impossible to fully and correctly design the classes of 

an OO system at the outset of a project. 

Booch proposes five metrics to measure the quality of classes: 

 Coupling 

 Cohesion 

 Sufficiency 

 Completeness 

 Primitiveness 

Coupling 

Inheritance makes for strong coupling (generally a bad thing) but 

takes advantage of the re-use of an abstraction (generally a good thing). 

Cohesion 

Cohesion measures the degree of connectivity among the elements of 

a single module. Coincidental and functional cohesion are used in a 

desirable form. 

Sufficiency 

It ensures whether the class captures enough of the details to permit 

meaningful and efficient interaction. 

Completeness 

It means that the interface of the class captures all the meaningful 

characteristics of the abstraction. It provides an interface that is commonly 

usable to any client.  

Primitive 

It specifies operations that can be efficiently used only if access is 

given to the abstraction. Primitive classes are smaller, easier to understand, 

with less coupling between methods, and are more likely to be reused. 

Sometimes issues of efficiency or interface ease-of-use will suggest you 

violate the general recommendation of making a class primitive. For 

example, you might provide a general method with many arguments to 

cover all possible uses, and a simplified method without arguments for the 

common case. 

 



 

26 
 

Classes and Objects 

 
NOTES 

Self-Instructional Material 

 

3.3 SYSTEM DEVELOPMENT LIFE CYCLE 

3.3.1 Software Process 

The essence of the software process is the transformation of users 

needs to the application domain and into a software solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Software Process 

An example of software development process is the waterfall 

approach. It starts by deciding what is to be done. Then it decides how to 

accomplish them. Followed by in which we can do it. Then test the result. 

Finally the prepared software is used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Waterfall software development process 

3.3.2 Software Quality 

There are two basic approaches to systems testing. We can test a 

system according to how it has been built.  Alternatively, we can test the 

system with respect to what it should do. 

 

 

 

 

 

What are the uses 

of the system? 

Problem 

       Statements 

                  Analysis 

 

Design 

       Implementation 

                     Detail 

System 

        Software 

                Product 

Transformation1 

Transformation2 

Transformation3 

 
What 

How 

Do it 

Test 

Use 



 

27 
 

Classes and Objects 

 

NOTES 

Self-Instructional Material 

 

Quality Measures 

Systems can be evaluated in terms of four quality measures: 

 Correspondence 

 Correctness 

 Verification 

 Validation 

 Correspondence measures how well the delivered system 

corresponds to the needs of the operational environment. It 

cannot be determined until the system is in place. 

 Correctness measures the consistency of the product 

requirements with respect to the design specification. 

 Verification is to predict the correctness. 

 Validation is to predict the correspondence  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Four Quality measures for software evaluation 

3.3.3 Object-Oriented Systems Development activities 

The object oriented software development life cycle consists of three 

macro processes:  

 Object Oriented Analysis 

 Object Oriented Design 

 Object Oriented Implementation 

Based on user requirements the design decisions can be tracked. 

 

Needs Requirement

s 

Design Softwar

e 

Verification 

Correctness 

Validation 

Correspondenc

e 



 

28 
 

Classes and Objects 

 
NOTES 

Self-Instructional Material 

 

 
 

Object oriented system development includes the following activities 

 Object-oriented analysis. 

 Object-oriented design. 

 Prototyping. 

 Component-based development. 

 Incremental testing. 

3.3.4 Use-case driven systems development 

Use Case, is a name for a scenario to describe the user – computer 

system interaction. 

 

3.3.5 Object-Oriented Analysis 

The object-oriented analysis phase of software development is 

concerned with determining the system requirements and identifying 

classes and their relationship to other classes in the problem domain. To 

understand the system requirements, we need to identify the users or the 



 

29 
 

Classes and Objects 

 

NOTES 

Self-Instructional Material 

 

actors. The intersection among objects’ roles to achieve a given goal is 

called collaboration. 

3.3.6 Object-Oriented Design 

The goal of Object-Oriented design (OOD) is to design the classes 

identified during the analysis phase and the user interface. During this 

phase, we identify and define additional objects and classes that support 

implementation of the requirements. 

First, build the object model based on objects and their relationships, 

then iterate and refine the model. 

OOD activities include: 

 Design and refine classes. 

 Design and refine attributes. 

 Design and refine methods. 

 Design and refine structures. 

 Design and refine associations. 

 Design User Interface or View layer classes. 

 Design data Access Layer classes. 

 

 

 

 

 

 

 

3.3.7 Prototyping 

 A Prototype enables to fully understand how easy or difficult it 

will be to implement some of the features of the system. 

 It can also give users a chance to comment on the usability and usefulness of 

the design. 

Types of Prototypes 

 A horizontal prototype is a simulation of the interface. 

 A vertical prototype is a subset of the system features with 

complete functionality. 

 An analysis prototype is an aid for exploring the problem domain. 

 A domain prototype is an aid for the incremental development of 

the ultimate software solution. 

The purpose of this review is threefold: 

1. To demonstrate that the prototype has been developed according 

to the specification and that the final specification is appropriate. 

Check Your Progress 

1. What are the metrics to measure quality of classes? 

2. What is the goal of Object oriented design? 

3. Define Use-case. 



 

30 
 

Classes and Objects 

 
NOTES 

Self-Instructional Material 

 

2. To collect information about errors or other problems in the 

system, such as user interface problems that need to be addressed 

in the intermediate prototype stage. 

3. To give management and everyone connected with the project the 

first (or it could be second or third)   

3.3.8 Component-based development (CBD) 

 CBD is an industrialized approach to the software development 

process. 

 Application development moves from custom development to 

assembly of pre-built,pre-tested, reusable software components 

that operate with each other. 

3.3.9 Rapid Application Development (RAD) 

 RAD is a set of tools and techniques that can be used to build an 

application faster than typically possible with traditional methods. 

 RAD does not replace SDLC but complements it, since it focuses 

more on process description and can be combined perfectly with 

the object-oriented approach. 

 3.3.10 Incremental Testing 

 Software development and all of its activities including testing are 

an iterative process. 

 If you wait until after development to test an application for bugs 

and performance, you could be wasting thousands of dollars and 

hours of time. 

3.3.11 Reusability 

A major benefit of object-oriented systems development is 

reusability, and this is the most difficult promise to deliver on. 

 Reuse strategy 

 Information hiding (encapsulation). 

 Conformance to naming standards. 

 Creation and administration of an object repository. 

 Encouragement by strategic management of reuse as opposed to 

constant development. 

 Establishing targets for a percentage of the objects in the project 

to be reused (i.e.,50 percent reuse of objects).The essence of the 

software process is the transformation of users‘ needs into a 

software solution. The O-O SDLC is an iterative process and is 

divided into analysis, design, prototyping/ 

implementation, and testing. 

 

 

 

 

 

 

 



 

31 
 

Classes and Objects 

 

NOTES 

Self-Instructional Material 

 

 

 

 

 

3.4 ANSWERS TO CHECK YOUR PROGRESS 

      QUESTIONS 

1. Coupling, Cohesion, Sufficiency, Completeness, Primitiveness 

2. The goal of Object-Oriented design (OOD) is to design the classes 

identified during the analysis phase and the user interface. 

3. Use Case, is a name for a scenario to describe the user – computer 

system interaction. 

4. A Prototype enables to fully understand how easy or difficult it will 

be to implement some of the features of the system. 

5. Component Based Development. Application development moves 

from custom development to assembly of pre-built, pre-tested, 

reusable software components that operate with each other.  

6. RAD is a set of tools and techniques that can be used to build an 

application faster than typically possible with traditional methods. 

 

3.5 SUMMARY 

 The essence of the software process is the transformation of users’ 

needs into a software solution. 

 For high quality of software four quality measures are described: 

Correspondence, correctness, verification and validation.  

 Object oriented system development consists of three macro 

processes: object oriented analysis, object oriented design and 

object oriented implementation. 

 Object oriented analysis builds a use case model and interaction 

diagrams to identify users needs.  

 Object oriented design focuses on design classes and their 

protocol, building class diagrams, user interfaces and prototypes, 

testing user satisfaction and usability. 

 Software components are functional units or building blocks 

offering a collection of reusable services. 

3.6 KEYWORDS 

 Use case  

 Object Oriented Analysis  

 Prototype  

 Rapid Application Development  

3.7 REVIEW QUESTIONS 

1. Give the metrics to measure the quality of classes. 

2. Define prototypes. 

Check Your Progress 

4. Give the purpose of prototyping. 

5. Expand and define CBD. 

6. Define RAD. 

 



 

32 
 

Classes and Objects 

 
NOTES 

Self-Instructional Material 

 

3. What is Reusability? 

4. Describe the OOD activities. 

5. Explain SDLC with neat diagram. 

3.8 FURTHER READINGS 

1. Object oriented system development, Ali Bahrami, Tata McGraw 

Hill Edition 

2. James Rumbaugh et.al, Object Oriented Modeling and Design, 

Addison Wesley 

3. Grady Booch, Robert A.Maksimchuk et.al,Object oriented 

analysis and design with Applications, Pearson Education, 3rd 

Edition 



 

33 
 

Object Oriented Methodologies 

 

NOTES 

Self-Instructional Material 

 

BLOCK 2: OBJECT ORIENTED 

METHODOLOGIES  

UNIT IV: Methodologies 

Structure 

4.0 Introduction 

4.1 Objectives 

4.2 Rumbaugh Object Modeling Technique 

4.2.1 Object Model 

4.2.2 The OMT Dynamic Model 

4.2.3 The OMT Functional Model 

4.3 Booch Methodology 

4.3.1 Macro development process 

4.3.2 Micro development process 

4.4 Jacobson Methodology 

4.4.1 Object oriented software Engineering: Objectory 

4.4.2 Object Oriented Business Engineering 

4.5 Shaler/Mellor Method   

 4.5.1 Translation 

4.5.2 Semantic decomposition 

4.5.3 Precise action language 

4.5.4 Test and simulation 

4.6 Coad-Yourdon methodology  

4.7 Answers to check your progress questions 

4.8 Summary 

4.9 Keywords 

4.10 Review Questions 

4.11 Further Readings 

 

4.0 INTRODUCTION 

Many methodologies are available to choose from for the system 

development. Each methodology is based on modeling the business 

problem and implementation in an object oriented fashion. The Rumbaugh 

et al method has a strong method for producing object models. Jacobson et 

al have a strong method for producing user-driven requirement and object 

oriented analysis model. Booch has a strong method for producing detailed 

object oriented design models. 

 

 

 



 

34 
 

Object Oriented Methodologies 

 

NOTES 

Self-Instructional Material 

 

4.1 OBJECTIVES 

After going through this unit, you will be able to:  

 Understand various methodologies for system development 

 Describe Rumbaugh OMT 

 Describe Booch methodology 

 Describe Jacobson et al  methodology  

 

4.2 RUMBAUGH OBJECT MODELING TECHNIQUE 

It gives the dynamic behaviour of objects in a system using the OMT 

dynamic model. 

 There are four phases available 

Analysis – results are objects, dynamic and functional models. 

System design – gives a structure of the basic architecture. 

Object design – produces a design document. 

Implementation – produces reusable code. 

 OMT separates modeling in to three different parts 

Object Model – presented by object model and the data dictionary. 

Dynamic model - presented by the state diagrams and event flow 

diagrams.  

Functional Model – presented by data flow and constraints. 

 

4.2.1 Object Model:- 

The structure of objects in a system is described by object model and 

also, their identity and relationships to other objects, attributes, and 

operations are also defined. The object model is represented graphically 

with an object diagram. 



 

35 
 

Object Oriented Methodologies 

 

NOTES 

Self-Instructional Material 

 

 

OMT object model of a bank system. Boxes represent classes. 

4.2.2 The OMT Dynamic Model: 

OMT provides a detailed and comprehensive dynamic model. The 

OMT state transition diagram is a network of states and events. Each state 

receives one or more events, at which it makes the transition to the next 

state. The next state depends on the current state as well as the events.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

State transition diagram for the bank application interface  

 Round boxes represents states.  

 Arrows represents transitions. 

4.2.3 The OMT Functional Model 

The OMT data flow diagram (DFD) shows the flow of data between 

different processing in a business. Data Flow Diagrams use four primary 

symbols: 

 

Nothing 

is 

Selected 

Account 

has been 

selected 
Selected 

checking of 

savings 

acount 

Select 

checking 

account Select 

transaction 

type 

(withdraw, 

deposit, 

transfer) 

Enter 

the 

amount 
Confirma

tion 



 

36 
 

Object Oriented Methodologies 

 

NOTES 

Self-Instructional Material 

 

 The process is any function being performed 

 The data flow shows the direction of data element movement 

 The data store is a location where data are stored. 

 An external entity is a source or destination of a data element. 

 Rumbaugh OMT methodology provides one of the strong 

tolls set for the analysis and design of object-oriented system. 

4.3 BOOCH METHODOLOGY 

Booch methodology helps to design our system using the object 

paradigm. It is criticized for its large set of symbols. It consists of the 

following diagrams: 

 Class diagrams 

 Object diagrams 

 State transition diagrams 

 Module diagrams 

 Process diagrams 

 Interaction diagrams 

There are mainly two processes available 

 Macro development process 

 Micro development process. 

4.3.1 Macro development process 

The primary concern of this process is technical management of the 

system. 

The Steps involved here are: 

 Conceptualization - Establishes core requirements and develops a 

prototype. 

Analysis and development of the model - The class diagram 

describes the roles and responsibilities of objects. The object diagram 

describes the desired behaviour of the system.  

 

 

 

 

 

 

 

 

 

 



 

37 
 

Object Oriented Methodologies 

 

NOTES 

Self-Instructional Material 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Object modelling using Booch notation. Arrows represent specialization. 

Taurus is subclass of the class Ford 

Design or create the system architecture - The class diagram 

decides what classes exist and how they relate to each other, the object 

diagram decides what mechanisms are used, the module diagram maps out 

where each class and object should be declared, and the process diagram to 

determine to which processor to allocate a process. 

Evolution or implementation – It refines the system through 

iteration. 

Maintenance – Can make localized changes to the system to add 

new requirements and eliminate bugs. 

4.3.2 Micro development process 

The micro development process is a description of the day-to-day 

activities. 

Steps involved: 

 Identify classes and objects 

 Identify classes and object semantics 

 Identify classes and object relationships 

 Identify classes and object interfaces and implementation 

 

 

 

          Superclass 

 

 

      Inherits 

 

 

 

   Inherits 

             Car 

          color 

   manufacturer 

    cost 

    Ford 

Mustang Taurus Escort 



 

38 
 

Object Oriented Methodologies 

 

NOTES 

Self-Instructional Material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An alarm class state transition diagram with Booch notation 

 

 

 

 

 

 

 

4.4 JACOBSON METHODOLOGY: 

This methodology covers the entire life cycle and stress traceability 

between the different phases both forward & backward. It consists of: 

 OOBE (O-O Business Engineering) 

 OOSE (O-O Software Engineering) also called 

 OBJECTORY (Object Factory for Software Development)  

 Use cases 

 Scenarios for understanding system requirements. 

 Non formal text with no clear flow of events. 

 Text easy to read. 

 Formal style using pseudo code. 

 Can be viewed as concrete or abstract (not initiated by 

actors). 

• Understanding system requirements 

• Interaction between user and system 

      Operator: TurnOff Alarm

        

 

    EEE 

 

 

 

           Enable             Disable 

AlarmFixed 

 

      SoundAlarm 

 

       

  SilenceAlarm 

Silenced Sounding 

Disabled 

Enabled 

Check Your Progress 

1. Define Object model. 

2. What is state transition diagram? 

3. Define DFD. 

4. What is a class diagram? 



 

39 
 

Object Oriented Methodologies 

 

NOTES 

Self-Instructional Material 

 

• It captures the goal of the user and responsibility of the 

system to its users 

 

Library 

4.4.1 Object oriented software Engineering: Objectory 

• OOSE is also called Objectory with the specific aim to fit the 

development of large, real time systems. 

• Development process is also called as use case driven 

development. 

Objectory is built around several different models such as: 

 Use-case model: The use-case model defines the outside and 

inside of the system behaviour 

 Domain Object model: The object of the real world are mapped 

into the domain object model. 

 Analysis Object model: It presents how the source code should be 

carried out and written. 

 Implementation model: The implementation model represents the 

implementation of the system. 

 Test model: It includes the test plans, specifications, and reports. 

 



 

40 
 

Object Oriented Methodologies 

 

NOTES 

Self-Instructional Material 

 

 

Use case model 

4.4.2 Object Oriented Business Engineering 

 OOBE is object modeling at the enterprise level. (Use case are 

also central here) 

 OOBE consists of : 

o Analysis phase 

The analysis phase defines the system to be built in terms of the 

 problem-domain object model 

 the requirements model 

 analysis model 

o Design & Implementation phase 

o The implementation environment must be identified for the 

design model. 

o Testing phase: Unit, integration & system testing.  

o This level includes unit testing, integration testing and 

system testing. 

4.5 SHALER/MELLOR METHOD  

The Shaler–Mellor method is also known as Object-Oriented 

Systems Analysis (OOSA) or Object-Oriented Analysis (OOA). It makes 

the documented analysis so precise that it is possible to implement the 

analysis model directly by translation to the target architecture. 

Shlaer-Mellor method is based on 

 separation of subject matters 

 I/O, User Interaction, Application domain, Software Architecture 

 specification of (executable) model for each subject matter 



 

41 
 

Object Oriented Methodologies 

 

NOTES 

Self-Instructional Material 

 

 translation of these models into code 

 The different categories of subject matters (domains) are 

 application domain (which are visible to end user) 

 services domain (they are more general domains) 

 software architecture domain (data, control, structures and time) 

 implementation domain (OS and programming languages) 

Separate teams can work on separate domains. 

4.5.1 Translation   

The implementation is always generated (either manually, or 

typically, automatically) directly from the analysis in the translative 

approach. In Shaler–Mellor method virtual machine executes any Shlaer–

Mellor analysis model for any particular hardware/software platform 

combination.  

4.5.2 Semantic decomposition 

This technique proposes a semantic decomposition in multiple 

domains  

 The split between analysis and design models: The analysis 

domain defines what the system must do, the design domain is a 

model shows how virtual machine operates for a particular 

hardware and software platform. These models are disjoint, the 

only connection being the notation used to express the models. 

 Decomposition within the analysis domain:   This considers how 

the system requirements are modelled, and grouped, around 

specific, disjoint, subject.  

4.5.3 Precise action language 

For automated code generation, the requirement is to model the 

actions within the finite-state machines that is used to express dynamic 

behaviour of Shaler–Mellor objects. Shlaer–Mellor is unique among 

object-oriented analysis methods in expressing such sequential behavior 

graphically as Action Data Flow Diagrams (ADFDs). The tools that 

supported Shlaer–Mellor, provided a precise action language. The action 

languages are written in textual form. 

4.5.4 Test and simulation 

The translative approach of the Shlaer–Mellor method gives itself to 

automated test and simulation environments. The concept of the Shlaer–

Mellor virtual machine makes testing useful and productive. Shlaer–Mellor 

is an event-driven, message-passing environment. Shlaer–Mellor virtual 

machine mandates a prioritised event mechanism built around State 

Models, which allows for concurrent execution of actions in different state 

machines. Since any implementation of Shlaer–Mellor requires this model 

to be fully supported, testing under simulation can be a very close model of 

testing on target platform. The functionality heavily dependent upon timing 

https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/Automatic_programming
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine


 

42 
 

Object Oriented Methodologies 

 

NOTES 

Self-Instructional Material 

 

constraints may be difficult to test, the majority of system behaviour is 

highly predictable due to the prioritized execution model.  

4.6 COAD-YOURDON METHODOLOGY  

The strength of this method is its system analysis.  It is based on a 

technique called "SOSAS", which has five steps that build the analysis part 

of their methodology.  

1. Subjects – It is a data flow diagrams for objects. 

2. Objects – It identifies the object classes and the class hierarchies. 

3. Structures – This method decompose structures into two types, 

classification structures and composition structures.  

Classification structures cope up with the inheritance connection 

between related classes, while composition structures carry out all 

of the other connections among classes.   

4. Attributes  

5. Services - All the behaviours or methods for each class are 

identified here. 

In the following analysis, Coad and Yourdon define four parts that 

make up the design part of their methodology. The steps of system design 

are: 

 The problem domain component - Defines the classes that should 

be in the problem domain.   

 The human interaction component - Defines the interface classes 

between objects.   

 The task management component - Defines where system-wide 

management classes are identified.   

 The data management component - Identifies the classes needed 

for database access methods. 

 

 

 

 

 

 

4.7 ANSEWERS TO CHECK YOUR PROGRESS 

      QUESTIONS 

1. The structure of objects in a system is described by object model 

and also, their identity and relationships to other objects, attributes, 

and operations are also defined. 

2. OMT state transition diagram is a network of states and events. 

Check Your Progress 

5. What is the aim of OOSE? 

6. Give the advantage of Shaler-Mellor method. 

7. Define classification structure. 



 

43 
 

Object Oriented Methodologies 

 

NOTES 

Self-Instructional Material 

 

3. The OMT data flow diagram (DFD) shows the flow of data 

between different processing in a business. 

4. The class diagram describes the roles and responsibilities of 

objects. 

5. OOSE is also called Objectory with the specific aim to fit the 

development of large, real time systems. 

6. It makes the documented analysis so precise that it is possible to 

implement the analysis model directly by translation to the target 

architecture. 

7. Classification structures cope up with the inheritance connection 

between related classes. 

 

4.8 SUMMARY 

 Object oriented methodology is a new system development 

approach, encouraging and facilitating re-use of software 

components. 

 Object oriented methodology employs international standard 

Unified Modeling Language (UML) from the Object Management 

Group (OMG). 

 Object model depicts the object classes and their relationships as a 

class diagram, which represents the static structure of the system. 

 Rumbaugh model gives the dynamic behaviour of objects in a 

system using the OMT dynamic model. 

 The OMT state transition diagram is a network of states and 

events. 

 The OMT data flow diagram (DFD) shows the flow of data 

between different processing in a business. 

 The class diagram describes the roles and responsibilities of 

objects. The object diagram describes the desired behaviour of the 

system. 

 OOSE is also called Objectory with the specific aim to fit the 

development of large, real time systems. 

 Shlaer–Mellor is unique among object-oriented analysis methods 

in expressing such sequential behaviour graphically as Action 

Data Flow Diagrams. 

4.9 KEYWORDS 

 UML 

 Object Management Group 

 State transition 

 Objectory 
 



 

44 
 

Object Oriented Methodologies 

 

NOTES 

Self-Instructional Material 

 

4.10 REVIEW QUESTIONS 

1. What are the phases of OMT? 

2. Compare functional and dynamic model. 

3. What are the diagrams used in Booch methodology? 

4. What are the steps involved in Macro development process in 

Booch methodology? 

5. Write short note on Objectory. 

6. What are the various models of objectory? 

7. Explain Rumbaugh’s Object Modeling Technique? 

8. Compare and Contrast the Booch and Jacobson methodology. 

9. Write a note on Shaler–Mellor method. 

10. Explain Coad and Yourdon methodology. 

4.11 FURTHER READINGS 

1. Booch G.,”Object Oriented Analysis And Design”,Addison- 

Wesley Publishing Company,1994. 

2. Rambaugh J, Blaha.M. Premeriani, W., Eddy F and Loresen 

W.,“Object Oriented    Modeling and Design”, PHI, 1997. 



 

45 
 

patterns 

NOTES 

Self-Instructional Material 

 

UNIT V: PATTERNS 

Structure 
 5.0 Introduction 
 5.1 Objectives 

5.2 Patterns 

 5.3 Patterns templates 

 5.4 Anti patterns 

 5.5 Capturing Patterns 

 5.6 Frameworks 

 5.7 Answers to check your progress questions 

5.8 Summary 

 5.9 Keywords 

5.10 Review Questions 

 5.11 Further Readings 

 

5.0 INTRODUCTION 

In systems development the process can be improved significantly 

if a system can be analyzed, designed and built from predefined system 

components. We need a body of literature to help software developers 

resolve commonly encountered, difficult problems and a vocabulary for 

communicating insight and experience about these problems and their 

solutions. The primary focus here is not so much on technology as on 

creating a culture to document and support engineering architecture and 

design. Patterns are being largely used for software architecture and design 

and for organizations, specification models and many other aspects of 

software development process. 

5.1 OBJECTIVES 

After going through this unit, you will be able to:  

 Understand about patterns 

 Describe pattern templates 

 Understand Frameworks 

5.2 PATTERNS 

Pattern is instructive information that captures the essential structure 

and insight of a successful family of proven solutions to a recurring 

problem that arises within a certain context and system of forces. The main idea 

behind using patterns is to provide documentation to help categorize and 

communicate about solutions to recurring problems. The pattern has a name to facilitate 

discussion and the information it represents. A good pattern will do the following: 

 It solves a problem. Patterns capture solutions, not just abstract 

principles or strategies. 



 

46 
 

Patterns 

 

NOTES 

Self-Instructional Material 

 

 It is a proven concept. Patterns capture solutions with a track 

record, not theories or speculation. 

 •The solution is not obvious. The best patterns generate a solution 

to a problem indirectly 

 — a necessary approach for the most difficult problems of design. 

 It describes a relationship. Patterns do not just describe modules, 

but describe deeper system structures and mechanisms. 

 The pattern has a significant human component. 

 All software serves human comfort or quality of life; the best 

patterns explicitly appeal to aesthetics and utility. 

Generative patterns – Tells us how to generate something. 

 observed in a system 

 descriptive and passive 

Non generative patterns –  

 generate systems or parts of systems  

 perspective and active 

5.3 PATTERNS TEMPLATES 

Name:- Name allows to use a single word or short phrase to refer to 

the pattern and the knowledge and structure it describes. Some pattern 

forms also provide a classification of the pattern in addition to its name. 

Problem:-A statement of the problem that describes its goals and 

objectives it wants to reach within the given context and forces. The forces 

oppose these objectives as well as each other. 

Context:- The preconditions under which the problem and its 

solution seem to recur and for which the solution is desirable. It can be 

thought of as the initial configuration of the system before the pattern is 

applied to it. 

Forces:- A description of the relevant forces and constraints and how 

they interact or with one another and with the goals that the user wish to 

achieve. A concrete scenario that serves as the motivation for the pattern 

frequently is employed. 

Solution:- Static relationships and dynamic rules describing how to 

realize the desired outcome. It describes how to construct the necessary 

products. It encompasses the pictures, diagrams and prose that identify the 

pattern structure, and their participants and collaborations to show how the 

problem is solved. 

Examples:- One or more sample applications of the pattern that 

illustrate a specific initial context; how the pattern is applied to and 

transforms that context. 

Resulting context:- The state or configuration of the system after the 

pattern has been applied, including the consequences of applying the 



 

47 
 

patterns 

NOTES 

Self-Instructional Material 

 

pattern and other problems and patterns that may arise from the new 

context. 

Rationale:- Steps or rules in the pattern and also of the pattern as a 

whole in terms of how and why it resolves it forces in a particular way to 

be in alignment with desired goals. 

Related patterns:- The static and dynamic relationships between this 

pattern and others within the same pattern language or system. Related 

pattern often share common forces. They also frequently have an initial or 

resulting context that is compatible with the resulting or initial context of 

another pattern. 

Known uses:- The known occurrences of the pattern and its 

application within existing systems. 

 

 

 

 

 

 

5.4 ANTIPATTERNS 

A pattern represents a “best practice” whereas an antipattern 

represents “worst practice” or a “lesson learned”. Antipattern come in two 

varieties: 

 Those describe a bad solution to a problem that resulted in a bad 

situation. 

 Those describing how to get out of a bad situation and how to 

proceed from there to a good solution. 

5.5 CAPTURING PATTERNS 

Guidelines for capturing patterns: 

 Focus on practicability.  

 Aggressive disregard of originality.  

 Non anonymous review.  

 Writers' workshops instead of presentations.  

 Careful editing 

5.6 FRAMEWORKS 

Frameworks are a way of delivering application development 

patterns to support best practice sharing during application development. A 

frame work is a way of presenting a generic solution to a problem that can 

be applied to all levels in a development. Several design patterns in fact a 

framework can be viewed as the implementation of a system of design 

patterns. 

Check Your Progress 

1. Define patterns. 

2. Difference between generative & non generative 

patterns. 

3. What is a related pattern? 



 

48 
 

Patterns 

 

NOTES 

Self-Instructional Material 

 

The major differences between design patterns and frameworks as 

follows 

 Design patterns are more abstract than frameworks. 

 Design patterns are smaller architectural elements than 

frameworks. 

 Design patterns are less specialized than frameworks. 

 

 

 

 

 

 

5.7 ANWERS TO CHECK YOUR PROGRESS  

      QUESTIONS 

1. Pattern is instructive information that captures the essential 

structure and insight of a successful family of proven solutions to a 

recurring problem that arises within a certain context and system of forces. 

2. Generative patterns – Tells us how to generate something. Non-

Generative patterns – generate systems or parts of systems. 

3. Related pattern often share common forces. They also frequently 

have an initial or resulting context that is compatible with the 

resulting or initial context of another pattern. 

4. Anti pattern represents “worst practice” or a “lesson learned”. 

5. A frame work is a way of presenting a generic solution to a 

problem that can be applied to all levels in a development. 

5.8 SUMMARY 

 Patterns provide documentation to help categorize and 

communicate about solutions to recurring problems.  

 Generative patterns tell us how to generate something. 

 Non generative patterns generate systems or parts of systems. 

 Name allows using a single word or short phrase to refer to the 

pattern. 

 Antipattern represents “worst practice” or a “lesson learned”. 

 A pattern should help its users comprehend existing systems, 

customize systems to fit user needs, and construct new system. 

The process of looking for patterns to document is called pattern 

mining. 

 A frame work is a way of presenting a generic solution to a 

problem that can be applied to all levels in a development. 

Check Your Progress 

4. Define anti patterns. 

5. What is a framework? 



 

49 
 

patterns 

NOTES 

Self-Instructional Material 

 

5.9 KEYWORDS 

 Patterns  

 Generative Patterns 

 Non Generative Patterns 

 Anti patterns 

 Frameworks 

5.10 REVIEW QUESTIONS 

1. Differentiate between Pattern and Frameworks. 

2. What are the components in pattern template? 

3. Define anti-patterns. 

4. Define pattern mining. Give the steps involved in capturing 

pattern. 

5. Define frame work. 

6. Describe patterns and the various pattern templates? 

5.11 FURTHER READINGS 

1. Booch G.,”Object Oriented Analysis And Design”,Addison- 

Wesley Publishing Company,1994. 

2. Rambaugh J, Blaha.M. Premeriani, W., Eddy F and Loresen 

W.,“Object Oriented    Modeling and Design”, PHI, 1997. 



 

50 
 

The Unified Approach 

 

NOTES 

Self-Instructional Material 

 

UNIT VI: THE UNIFIED APPROACH 

Structure 

 6.0 Introduction 

 6.1 Objectives 

6.2 Unified Approach 

 6.3 Unified Modelling Language 

 6.4 Static model 

 6.5 Dynamic model 

 6.6 Introduction to UML 

 6.7 UML Class diagram 

 6.8 UML Dynamic Modeling 

 6.9 Package 

 6.10 UML Extensibility  

 6.11 UML Meta-model 

 6.12 Answers to check your progress questions 

6.13 Summary 

6.14 Keywords 

6.15 Review Questions 

6.16 Further Readings 

 

6.0 INTRODUCTION 

The approach is based on the best practices that have proven 

successful in system development. The unified approach utilizes the 

unified modelling language to describe, model and document the software 

development process. The main motivation here is to combine the best 

practices, processes, methodologies and guidelines along with UML 

notations and diagram for better understanding object- oriented concepts 

and system development. 

6.1 OBJECTIVES 

After going through this unit, you will be able to:  

 Describe Unified approach 

 Understand about UML 

 Understand about UML class diagrams 

 Describe Packages 

 Describe UML extensibility 

6.2 UNIFIED APPROACH 

It establishes a unifying and unitary framework by utilizing UML. 

The processes are: 

 Use case driven development. 



 

51 
 

The Unified Approach 

 

NOTES 

Self-Instructional Material 

 

 Object oriented analysis. 

 Object oriented design. 

 Incremental development and prototyping 

 Continuous testing. 

Methods and technologies employed include: 

UML:- For modelling Unified Modelling approach is used  

Layered approach  

Repository:- Repository for object-oriented system development 

patterns and frameworks 

CBD:- Component based development 

The Unified Approach allows iterative development by allowing to 

go back and forth between the design and the modeling or analysis phase.  
It makes backtracking very easy and departs from the linear waterfall 

process, which allows no form of backtracking. 

Object oriented Analysis 

 Identify actors. 

 Develop a simple process model. 

 Develop the use case. 

 Develop interaction diagrams. 

 Identify classes. 

Object oriented design 

 Design classes, attributes, methods etc. 

 Design the access layer. 

 Design the prototype user interface. 

 User satisfaction and usability tests. 

 Iterate and refine the design. 

Continuous testing 

 Iterate and reiterate until satisfied with the system  

UML  

 Universal language for modelling systems 

 Has standard notation 

 Repository 

 Allows maximum reuse of previous experience 

 Should be accessible by many people 

 Layered approach 

1. The business layer - Displays results and provides data access 

details 



 

52 
 

The Unified Approach 

 

NOTES 

Self-Instructional Material 

 

2. The user interface or view layer –  

 Responds to user interaction: It is designed to translate 

actions given by the user, such as clicking on a button or 

selecting from a menu 

 Displaying business objects: This layer paints a best 

possible picture of the business objects for the user. 

3. The access layer 

 Translate request: The access layer must be able to translate 

any data related requests from the business layer in to the 

appropriate protocol for data access. 

 Translate results: The access layer also must be able to 

translate the data retrieved back into the appropriate 

business objects and pass those objects back up into the 

business layer. 

6.3 UNIFIED MODELLING LANGUAGE 

This object-oriented system of notation was evolved from the work 

of Grady Booch, James Rumbaugh, Ivar Jacobson, and the Rational 

Software Corporation. These renowned computer scientists combined their 

respective technologies into a single, standardized model. 

Now, UML is accepted by the Object Management Group (OMG) as 

the standard for modelling object oriented programs. UML survival 

introduces the Unified Modeling Language and leads us through an orderly 

progress towards mastery of the language.  

Model: 

A Model is an abstract representation of a system Constructed to 

understand the system prior to building or modifying it. 

Why Modelling: 

 Building a model for a software system prior to its construction is as 

essential as having a blue print for building a large building. Good models 

are essential for communication among project teams. It has 

1. Model elements - fundamental modelling concepts semantics 

2. Notation - Visual rendering of model elements. 

3. Guidelines - Expression of usage within the trade. 

This visual notation provides benefits related to clarity, familiarity 

and maintenance. 

Clarity: Much better at picking out errors. 

Familiarity: Similar to the way in which information is actually 

stored. 

Maintenance: Visual notation can improve the maintainability of a 

system. 

 



 

53 
 

The Unified Approach 

 

NOTES 

Self-Instructional Material 

 

Advantages: 

1. Easier to express complex ideas 

2. Reduction of complexity. 

3. Cost is lower. 

4. Manipulation is easier. 

6.4 STATIC MODEL 

It can be viewed as a snapshot of a system’s parameters at rest or at a 

specific point in time Ex: Class diagram 

6.5 DYNAMIC MODEL 

It can be viewed as a collection of procedures or behaviours that 

taken together reflect the behaviour of a system over time ex: Interaction 

diagram. 

 

 

 

 

 

 

6.6 INTRODUCTION TO UML 

The unified modeling language (UML) is a language for specifying, 

constructing, visualizing, and documenting the software system and its 

components.  

 UML is graphical language with set of rules and semantics  

 The rules and semantics of a model are expressed in English, in a 

form of known as Object constraint language (OCL). 

 The UML defines nine graphical diagrams: 

1. Class diagram (static) 

2. Use-case diagram 

3. Behavior diagrams (dynamic): 

  3.1. Interaction diagram: 

•3.1.1. Sequence diagram 

•3.1.2. Collaboration diagram 

3.2. Statechart diagram 

3.3. Activity diagram 

4. Implementation diagram: 

4.1. Component diagram 

4.2. Deployment diagram 

6.7 UML CLASS DIAGRAM 

UML Class Diagram is also referred to as Object modeling. It is a 

collection of static modelling elements. The system is formed with objects, 

Check Your Progress 

1. Give the purpose of access layer. 

2. Define static model. 

3. Define dynamic model. 



 

54 
 

The Unified Approach 

 

NOTES 

Self-Instructional Material 

 

because in the object-oriented viewpoint, objects are the primary 

abstraction. Each object in the problem domain describes the structure and 

the relationship among objects. 

Class notation – rectangle with three compartments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Object diagram – instance of a class diagram. 

Class interface notation – small circle with the interface name 

connected to the class. 

 

 

 

 

 

 

Interface notation of a class 

Binary association – solid path connecting two classes 

 

 

 

 

 

 

 

 

 

 

Qualifier – small rectangle attached to the end of an association. 

 Multiplicity – specifies the range of allowable associated classes. 

It is given for roles within associations. Sequence of integer 

intervals, where an interval represents a range of integers in this format. 

0…1(lower bound …..upper bound) 0…* 1..3, 7…10, 15, 19…* 

 

 

Boeing 737 

Boeing 737 

Length: meter 

Fuel capacity: Gal 

Doors: int 

Boeing 737 

Length: meter 

Fuel capacity: Gal 

Doors: int 

 

Lift () 

Break () 

 

 

 Person Bank Account 

                                                                  Works for 

                                      Employer                    Employee 

 

 

                                     Married to  

Company Person 

 

Person 



 

55 
 

The Unified Approach 

 

NOTES 

Self-Instructional Material 

 

 

 

 

 

 

 

 

 

 

 

 

 

OR association – dashed line connecting two or more associations. 

 

 

 

 

 

 

 

 

 

 

Association class – association that has class properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             * 

 

                     0...1                     

  

Bank 

Account# 

 

Person 

 

 

          (or) 
Car 

Person 

Company 

 

 

         Employer                   employee 

Company Person 

Worksfor 

Salary 

 



 

56 
 

The Unified Approach 

 

NOTES 

Self-Instructional Material 

 

 

 

 

 

 

 

 

 

 

 

 

 

N-ary association – association among more than two classes. 

 

 

 
Aggregation and composition– hollow diamond attached to the end of 

the path. Aggregation is a form of association. Composition also known as the a-
part-of is a form of aggregation with strong ownership to represent the 
component of a complex object. 

 

 

 

 

 

 

Generalization – relationship between a general class and a more 

specific class. 

6.8 UML DYNAMIC MODELING 

UML Interaction Diagrams 

Interactions diagram describes how group of objects collaborate to 

get the job done. 

 

    

          Semester     * 

   

    

            *               * 

 

            Class   Student  

Year 

Class Student 

GradeBook 

Grade 

Exam 

lab 

   Consists of   

Team Player 



 

57 
 

The Unified Approach 

 

NOTES 

Self-Instructional Material 

 

It captures the behavior of the single use case showing the pattern of 

interaction among objects. 

UML Sequence Diagrams 

 Sequence diagrams illustrate how objects interact with each other. 

 They focus on message sequences, that is, how messages are sent 

and received between a number of objects. 

 Sequence diagrams have two axes: the vertical axis shows time 

and the horizontal axis shows a set of objects. 

 The Instance form describes a specific scenario in detail 

 The Generic form describes all possible alternatives in a scenario, 

therefore branches, conditions, and loops. 

 

UML Collaboration Diagram 

Collaboration diagrams focus on the interaction and the line between 

a set of collaborating objects. The sequence diagram focuses on time but 

the collaboration diagram focuses on space. 



 

58 
 

The Unified Approach 

 

NOTES 

Self-Instructional Material 

 

 

UML State Chart Diagram 

A State chart diagram shows the sequence of states that an object 

goes through during its life in response to outside and messages. The state 

is a set of values that describes an object at a specific point in time and is 

represented by state symbols and the transitions are represented by rows 

connecting the state symbols. A state chart diagram may contain sub 

diagrams. A state diagram represents the state of the method execution and 

activities in the diagram represent the activities of the object that performs 

the method. The purpose of the state diagram is to understand the 

algorithm involved in performing the method. To complete the OOD, the 

activities within the diagram must be assigned to objects and the control 

flows assigned to links in the object diagram. 

 

UML ACTIVITY DIAGRAM 

An activity diagram is a variation or special case of a state machine, 

in which the states are activities representing the performance of operations 



 

59 
 

The Unified Approach 

 

NOTES 

Self-Instructional Material 

 

and the transitions are triggered by the completion of the operations. An 

activity diagram is used mostly to show the internal state of an object, but 

external events may appear in them. An external event appears when the 

object is in a “wait state” a state during which there is no internal activity 

by the object and the object is waiting of some external event to occur as a 

result of an activity of an another object. Activity and state diagrams 

express a decision when conditions are used to indicate different possible 

transitions that depend on Boolean conditions of container object. 

 

 

 



 

60 
 

The Unified Approach 

 

NOTES 

Self-Instructional Material 

 

Implementation Diagrams 

These diagrams show the implementation phase of systems 

development, such as the source code structure and the run-time 

implementation structure. 

There are two types of implementation diagrams:  

• Component diagrams show the structure of the code itself. 

• Deployment diagrams show the structure of the run-time system.  

 

Component diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

Component diagrams model the physical components such as (source 

code, exe, UI) in a design. Components are connected by dependency 

relationships. Component is represented by the boxed figure shown in 

above fig, Dependency is shown as a dashed arrow. 

Deployment diagram 

This diagram shows the configuration of run-time processing 

elements and the software components, process, and objects live in the 

system. Deployment diagrams show how physical modules of code are 

distributed on various hardware platforms. 

 

 

      Update 
    Access 

 

           UI 



 

61 
 

The Unified Approach 

 

NOTES 

Self-Instructional Material 

 

 

 

 

 

 

 

 

 

6.9 PACKAGE 

A package is a grouping of model elements.  

 Packages themselves may contain other packages.  

 A package may contain both subordinate packages and ordinary 

model elements 

 A package is a represented as folder, shown as a large rectangle 

with a tab attached to its upper left corner 

 If contents of the package are not shown, than the name of the 

package is placed within the large rectangle. 

 If contents of the package are shown, then the name of the 

package may be placed on the tab. 

 

6.10 UML EXTENSIBILITY  

Model Constraints and comments 

Constraints are assumptions or relationships among model elements 

specifying conditions and propositions that must be maintained as true 

otherwise the system described by the model would be invalid. 

Check Your Progress 

4. What is class interface notation? 

5. Define Interaction diagram. 

6. Give the purpose of state diagram 

7. Define Activity diagram. 

8. List the types of implementation diagram. 



 

62 
 

The Unified Approach 

 

NOTES 

Self-Instructional Material 

 

Note 

A note is a graphic symbol containing textual information; it also 

could contain embedded images.  

Stereotypes 

Stereotypes represent a built-in extendibility mechanism of the UML. 

 User-defined extensions of the UML are enabled through the use 

of stereotypes and constraints. 

6.11 UML META-MODEL 

A meta-model is a model of modelling elements. The purpose of the 

UML meta-model is to provide a single, common, and definitive statement 

of the syntax and semantics of the elements of the UML. The UML meta-

model describes the relationship between association and generalization. 

Association is depicted as composition of association roles. Here, we use 

UML modelling elements (such as generalization and composition) to 

describe the model itself, hence, the term meta-model. 

 

 

 

 

 

 

6.12 ANSWERS TO CHECK YOUR PROGRESS  

        QUESTIONS 

1. The purpose of access layer is to translate the requests and translate 

the results. 

2. Static model can be viewed as a snapshot of a system’s parameters 

at rest or at a specific point in time Ex: Class diagram 

3. Dynamic model can be viewed as a collection of procedures or 

behaviours that taken together reflect the behaviour of a system 

over time ex: Interaction diagram. 

4. Class interface notation is a  small circle with the interface name 

connected to the class. 

5. Interactions diagram describes how group of objects collaborate to 

get the job done. 

6. The purpose of the state diagram is to understand the algorithm 

involved in performing the method. 

7. An activity diagram is a variation or special case of a state 

machine, in which the states are activities representing the 

performance of operations and the transitions are triggered by the 

completion of the operations. 

Check Your Progress 

9. How a package is represented in diagrams. 

10. Define Note. 

11. What is the purpose of meta model? 



 

63 
 

The Unified Approach 

 

NOTES 

Self-Instructional Material 

 

8. The two types of implementation diagrams are Component diagram 

and Deployment diagram. 

9. A package is a represented as folder, shown as a large rectangle 

with a tab attached to its upper left corner 

10. A note is a graphic symbol containing textual information; it also 

could contain embedded images.  

11. The purpose of the UML meta-model is to provide a single, 

common, and definitive statement of the syntax and semantics of 

the elements of the UML. 

6.13 SUMMARY 

 The main motivation for going to unified approach is to combine 

the best practices, processes, methodologies, and guidelines along 

with UML (Unified Modeling Language) notations and diagrams 

for better understanding object oriented concepts and system 

development. 

 A model is an abstract representation of a system, constructed to 

understand the system prior to building or modifying it.  

 Static model can be viewed as a snapshot of a system’s parameters 

at rest or a specific point in time. 

 It can be viewed as a collection of procedures or behaviours that 

taken together reflect the behaviour of a system over time. 

 Modeling reduces complexity. 

 The unified modeling language (UML) is a language for 

specifying, constructing, visualizing and documenting the 

software system and its components. 

 A package groups and manages the modeling elements, such as 

classes, their associations, and their structures. 

 Implementation diagrams show the implementation phase of 

system development, such as the source code structure and the 

run-time implementation structure. 

6.14 KEYWORDS 

 Object oriented Analysis 

 Object oriented Testing 

 Repository 

 Modelling 

 Class Diagram 

 UML 

 Package 

 Meta model 

 



 

64 
 

The Unified Approach 

 

NOTES 

Self-Instructional Material 

 

6.15 REVIEW QUESTIONS 

1. Define model. Explain about the types of model. 

2. What are the advantages of Modeling? 

3. Define UML. 

4. Mention the primary goals in the design of the UML. 

5. Give the nine UML graphical diagrams. 

6. Write short note on UA proposed Repository. 

7. How interfaces are represented in UML? 

8. Explain in detail about the Unified approach?  

9. Describe the UML Class diagram?  

10. Explain the Interaction diagrams with an example. 

6.16 FURTHER READINGS 

1. Booch G.,”Object Oriented Analysis And Design”,Addison- 

Wesley Publishing Company,1994. 

2. Rambaugh J, Blaha.M. Premeriani, W., Eddy F and Loresen W., 

“Object Oriented Modeling and Design”, PHI, 1997. 



 

65 
 

Object Oriented Analysis 

 

NOTES 

Self-Instructional Material 

 

BLOCK 3: OBJECT ORIENTED 

ANALYSIS 

UNIT VII: OBJECT ORIENTED 

ANALYSIS 

Structure 

7.0 Introduction 

7.1 Objectives 

7.2 Identifying Use Cases 

7.3 Developing Business Processes Modelling 

7.4 Use Case Model  

7.4.1 Use Cases Under the Microscope 

7.4.2 Use Associations 

7.4.3 Identifying the Actors 

7.4.4 Guidelines for Finding Use Cases 

7.4.5 How detailed must a use case be? When to stop 

decomposing it and when to continue 

7.4.6 Dividing use case into package 

7.5 Documentation 

 7.5.1 Guidelines for Effective Documentation 

 7.6 Answers to check your progress questions  

7.7 Summary 

7.8 Keywords 

7.9 Review Questions 

7.10 Further Readings 

7.0 INTRODUCTION 

The first step in finding an appropriate solution to a given problem 

is to understand the problem and its domain. Analysis is the process of 

transforming a problem definition from a fuzzy set of facts and myths into 

a coherent statement of a system’s requirements.  Analysis involves a great 

deal of interaction with the people who will be affected by the system, 

including the actual users and anyone else on which its creation will have 

an impact. An object oriented environment allows the same set of models 

used for analysis, design and implementation.   

7.1 OBJECTIVES 

After going through this unit, you will be able to:  

 Understand use cases  

 Describe use case models 

 Understand about documentation 

 



 

66 
 

Object Oriented Analysis 

 

NOTES 

Self-Instructional Material 

 

7.2 IDENTIFYING USE CASES 

The use-case approach to object-oriented analysis and the object-

oriented analysis process consists of  

 Identifying actors. 

 Identifying use cases. 

 Documentation. 

What Is Analysis? 

Analysis is the process of transforming a problem definition from a fuzzy set of 

facts and myths into a coherent statement of a system‘s requirements. The 

main objective of the analysis is to capture a complete, unambiguous, and consistent 

picture of the requirements of the system and what the system must do to satisfy the 

users' requirements and needs. 

 Requirements Difficulties 

Three most common sources of requirements difficulties are: 

1. Incomplete requirements. 

2. Fuzzy descriptions (such as fast response). 

3. Unneeded features. 

The Object-Oriented Analysis (OOA) Process 

The process consists of the following steps: 

1. Identify the actors:  i.Who is using the system? ii.Or, in the case of a 

new system, who will be using the system? 

2. Develop a simple business process model using UML activity 

diagram. 

3. Develop the use case  

a. What the users are doing with the system?  

b. Or, in the case of a new system, what users will be doing 

with the system? Use cases provide us with 

comprehensive documentation of the system under study. 

4. Prepare interaction diagrams: 

• Determine the sequence. 

• Develop collaboration diagrams 

5. Classification — develop a static UML class diagram 

• Identify classes. 

• Identify relationships. 

• Identify attributes. 

• Identify methods. 

6. Iterate and refine: If needed, repeat the preceding steps. 



 

67 
 

Object Oriented Analysis 

 

NOTES 

Self-Instructional Material 

 

 

7.3 DEVELOPING BUSINESS PROCESSES 

       MODELLING 

Developing an activity diagram of the business processes can provide 

us with an overall view of the system. It is not necessary for all projects. When 

required business process and requirements can be modelled to any level of 

detail. Activity diagram support this modelling. 

Disadvantages - Time consuming process 

Advantages – Familiarity 

 

 

 

 

 

 

7.4 USE CASE MODEL  

Use cases are scenarios for understanding system requirements. The 

use-case model describes the uses of the system and shows the courses of 

events that can be performed. 

Use case defines what happens in the system when a use case is 

performed. The use case model tries to systematically identify uses of the 

system and therefore the system's responsibilities. 

7.4.1 Use Cases Under the Microscope: 

A Use Case is a sequence of transactions in a system whose task is to 

yield results of measurable value to an individual actor of the system. 

Use Case Key Concepts 

 Use case - Use case is a special flow of events through the system. 

 Actors - An actor is a user playing a role with respect to the 

system. 

 In a system - This simply means that the actors communicate with 

the system's use case. 

 A measurable value - . A use case must help the actor to perform a 

task that has some identifiable value. 

Check Your Progress 

1. Give the objective of analysis. 

2. What are the steps in preparing interaction 

diagrams? 

 



 

68 
 

Object Oriented Analysis 

 

NOTES 

Self-Instructional Material 

 

 Transaction - A transaction is an atomic set of activities that are 

performed either fully or not at all. 

7.4.2 Use Associations 

The use association occurs when you are describing your use cases and notice 

that some of them have common sub flows. The use association allows you 

to extract the common sub flow and make it a use case of its own. 

Extends Associations 

The extends association is used when you have one use case that is similar to 

another use case but does a bit more or is more specialized; in essence, it is like a 

subclass. 

Types of Use Cases 

 Use cases could be viewed as concrete or abstract. 

 An abstract use case is not complete and has no initiation actors but is used 

by a concrete use case, which does interact with actors. 

7.4.3 Identifying the Actors 

i. The term actor represents the role a user plays with respect to the 

system. 

ii. When dealing with actors, it is important to think about roles 

rather than people or job titles. 

iii. Who affects the system? Or, 

iv. Which user groups are needed by the system to perform its 

functions? These functions can be both main functions and 

secondary functions, such as administration. 

v. Which external hardware or other systems (if any) use the system 

to perform tasks? 

vi. What problems does this application solve (that is, for whom)? 

vii. And, finally, how do users use the system (use case)? What are 

they doing with the system? 



 

69 
 

Object Oriented Analysis 

 

NOTES 

Self-Instructional Material 

 

 

7.4.4 Guidelines for Finding Use Cases 

 For each actor, find the tasks and functions that the actor should 

be able to perform or that the system needs the actor to perform. 

 Name the use cases. 

 Describe the use cases briefly by applying terms with which the user is 

familiar.  

Separate Actors from Users 

 Each use case should have only one main actor  

 Isolate users from actors. 

 Isolate actors from other actors (separate the responsibilities of 

each actor). 

 Isolate use cases that have different initiating actors and slightly 

different behaviour. 

7.4.5 How detailed must a use case be? When to stop 

decomposing it and when to continue 

 Develop system use case diagram 

 Draw package 

– to represent business domains of the system for each 

package 

 create child use case diagram 

 Prepare at least one scenario for each use case 

- Each scenario shows different sequence of interaction , with 

all decisions definite 

 When the lowest use case level is arrived, which can’t be broken 

further, 



 

70 
 

Object Oriented Analysis 

 

NOTES 

Self-Instructional Material 

 

 sequence and collaboration diagram is drawn 

7.4.6 Dividing use case into package 

 Whole system is divided into many packages 

 Each package encompasses multiple use cases 

 Each use-case represent a scenario in the system 

 a design can be broken down into packages, and each of packages 

consists multiple use-cases 

 

 

 

 

 

 

7.5 DOCUMENTATION 

An effective document can serve as a communication vehicle among 

the project's team members, or it can serve as initial understanding of the 

requirements. 

 Important factor in making a decision about committing 

(assigning, handover, giving) resources 

 Mainly depends on rules and regulation 

7.5.1 Guidelines for Effective Documentation:  

1. Common Cover - All documents should share a common cover 

sheet that identifies the document, the current version, and the 

individual responsible for the content 

2. 80-20 Rule - 80 percent of the work can be done with 20 percent of the 

documentation. 

3. The trick is to make sure that the 20 percent is easily accessible 

and the rest (80percent) is available to those (few) who need to 

know. 

Familiar Vocabulary 

 Use a vocabulary that your readers understand and are 

comfortable with. 

 The main objective here is to communicate with readers and not 

impress them with buzz words.  

Make the Document as Short as Possible 

 Eliminate all repetition; 

 Present summaries, reviews, organization chapters in less than 

three pages. 

Check Your Progress 

3. Define use case model. 

4. Define actor. 

5. Define transaction. 

6. List the types of use cases.  

 



 

71 
 

Object Oriented Analysis 

 

NOTES 

Self-Instructional Material 

 

 Make chapter headings task oriented so that the table of contents 

also could serve as an index.  

Organize the Document 

Use the rules of good organization within each section.  

The main objective of the analysis is to capture a complete, 

unambiguous, and consistent picture of the requirements of the system.  

To construct several models and views of the system to describe 

what the system does rather than how.  

Capturing use cases is one of the first things to do in coming up with 

requirements. Every use case is a potential requirement.  

The key in developing effective documentation is to eliminate all 

repetition; present summaries, reviews, organization chapters in less than 

three pages.  

 

 

 

 

 

 

 

7.6 ANSWERS TO CHECK YOUR PROGRESS 

      QUESTIONS 

1. The main objective of the analysis is to capture a complete, unambiguous, 

and consistent picture of the requirements of the system and what the system 

must do to satisfy the users' requirements and needs. 

2. First determine the sequence and then to develop collaboration diagrams 

3. The use-case model describes the uses of the system and shows the 

courses of events that can be performed. 

4. An actor is a user playing a role with respect to the system. 

5. A transaction is an atomic set of activities that are performed either 

fully or not at all. 

6. Use cases could be viewed as concrete or abstract. 

7. An effective document can serve as a communication vehicle 

among the project's team members, or it can serve as initial 

understanding of the requirements. 

8. The key in developing effective documentation is to eliminate all 

repetition; present summaries, reviews, organization chapters in 

less than three pages.  

 

Check Your Progress 

7. What is the advantage of effective 

documentation? 

8. What is the key in developing effective 

documentation? 

 

 



 

72 
 

Object Oriented Analysis 

 

NOTES 

Self-Instructional Material 

 

7.7 SUMMARY 

 Analysis is the process of transforming a problem definition from 

a fuzzy set of facts and myths into a coherent statement of a 

system‘s requirements. 

 A use-case model is a model of the system’s intended functions 

(use cases) and its surroundings (actors). 

 Use cases are scenarios that describe how actors use the system. 

 An actor represents anything that interacts with the system. 

 Use cases could be viewed as concrete or abstract. 

 An effective document can serve as a communication vehicle 

among the project's team members, or it can serve as initial 

understanding of the requirements. 

 

7.8 KEYWORDS 

 Use case model 

 Associations 

 Actors 

 Documentation 

7.9 REVIEW QUESTIONS 

1. What is a use case model? 

2. Describe the basic activities in OO analysis? 

3. Who are actors? 

4. Why are uses and extends associations useful in use case 

modeling? 

5. How do you identify actors? 

6. What is the difference between users and actors? How 

would you identify them? 

7. What is 80-20 rule? 

8. What are the guidelines for developing effective 

documentation? 

7.10 FURTHER READINGS 

1. Bahrami, A.(1999). Object Oriented Systems Development, 

using the unified modeling language, McGraw-Hill 

2. Object Oriented Analysis and Design using UML, by 

Rational Software Corporation 

3. Dennis,A., Wixon,B.H., and Tegarden,D.(2002). Systems 

Analysis and Design : An Object Oriented Approach with 

UML 



 

73 
 

Classification 

 

NOTES 

Self-Instructional Material 

 

UNIT VIII: CLASSIFICATION 

Structure 
8.0 Introduction 

8.1 Objectives 

  8.2 Approaches for Identifying Classes 

 8.3 Noun Phrase Approach 

  8.3.1 Guidelines for selecting classes in an application 

8.3.2 Guidelines in selecting candidate classes from the 

relevant and fuzzy categories  

  8.3.3 Initial list of noun classes : in vianet bank 

  8.3.4 Removing irrelevant classes 

8.3.5 Reviewing the Redundant classes and Building a 

                     common vocabulary 

8.3.6 Reviewing the class purpose 

8.4 Common Class Patterns Approach 

8.5 Answers to check your progress questions 

8.6 Summary 

8.7 Keywords 

8.8 Review Questions 

8.9 Further Readings 

8.0 INTRODUCTION 

 Identification of classes is the hardest part of part of OO-Analysis. 

 Object analysis is a process by which we can identify the classes 

that play a role in achieving the system goals & requirements 

 Booch states that “ There is no such a thing as the perfect class 

structure, nor the right set of objects” 

 Classification is the categorization of input data (things) into 

identifiable classes through the extraction of significant features 

of attributes of the data from a background of irrelevant detail 

 Classes are an important mechanism for classifying objects  

 The main role of a class is to define the attributes, methods, and 

applicability of its instances. 

8.1 OBJECTIVES 

After going through this unit, you will be able to:  

 Describe the approaches of identifying classes 

 Understand Noun phrase approach 

 Understand Common class pattern approach 

 

 

 



 

74 
 

Classification 

 

NOTES 

Self-Instructional Material 

 

 

8.2 APPROACHES FOR IDENTIFYING CLASSES 

 There are four approaches to identify classes. They are  

 Noun phrase approach 

 Common class patterns approach 

 Use-case driven approach 

 Classes, responsibilities, & collaborators (CRC) approach 

8.3 NOUN PHRASE APPROACH 

 Proposed by Rebecca Wirfs-Brock, Brian Wilkerson, & Lauren 

Wiener 

 Read through the requirements or use-cases looking for noun 

phrases 

 Nouns in textual description are considered as classes 

 Verbs are considered as methods 

 All plurals are changed to singular 

Nouns are listed and divided into three categories 

 Relevant classes 

 Fuzzy classes 

 Irrelevant classes 

8.3.1 Guidelines for selecting classes in an application 

 Look for nouns and noun phrases in the use-cases 

 Some classes are implicit or taken from general knowledge 

 All classes must make sense in the application domain; avoid 

computer implementation classes – defer them to the design 

stage 

 Carefully choose and define class names 

8.3.2 Guidelines in selecting candidate classes from the 

          relevant and fuzzy categories  

 Redundant classes do not keep two classes that express the 

same information 

 Adjectives classes can suggest a different kind of object, 

different use of the same object, or it could be utterly 

irrelevant. If the use of the adjective signals that the behaviour 

of the object is different, then make a new class 

 Attribute classes – Tentative objects that are used only as 

values should be defined or restates as attributes and not as a 

class 



 

75 
 

Classification 

 

NOTES 

Self-Instructional Material 

 

 Irrelevant classes - Each class must have a purpose and should 

be clearly defined and necessary. Formulate a statement of 

purpose for each candidate class 

 

 

The process of eliminating the redundant classes and refining the 

remaining classes is not sequential. Can move back and forth among these 

steps   

8.3.3 Initial list of noun classes : in vianet bank 

 Account 

 Account balance 

 Amount 

 Approval process 

 Atm card 

 Atm machine 

 Bank 

 Bank client 

 Card 

 Cash 

 Check 

 Checking 

 Checking account 

 Client 

 Client’s account 

 Currency 

 Dollar 

 Envelope 

 Four digits 

 Fund 

 Invalid pin 

 Message 

 Money 

 Password 

 PIN 

 Pin code 



 

76 
 

Classification 

 

NOTES 

Self-Instructional Material 

 

 Record 

 Savings 

 Savings account 

 Step 

 System 

 Transaction 

 Transaction history 

8.3.4 Removing irrelevant classes 

 Account 

 Account balance 

 Amount 

 Approval process 

 Atm card 

 Atm machine 

 Bank 

 Bank client 

 Card 

 Cash 

 Check 

 Checking 

 Checking account 

 Client 

 Client’s account 

 Currency 

 Dollar 

 Envelope 

 Four digits 

 Fund 

 Invalid pin 

 Message 

 Money 

 Password 

 PIN 

 Pin code 

 Record 

 Savings 

 Savings account 

 Step 

 System 

 Transaction 

 Transaction history 

8.3.5 Reviewing the Redundant classes and Building a 

common vocabulary 

 Account 

 Account balance 

 Amount 



 

77 
 

Classification 

 

NOTES 

Self-Instructional Material 

 

 Approval process 

 Atm card 

 Atm machine 

 Bank 

 Bank client 

 Card 

 Cash 

 Check 

 Checking 

 Checking account 

 Client 

 Client’s account 

 Currency 

 Dollar 

 Envelope 

 Four digits 

 Fund 

 Invalid pin 

 Message 

 Money 

 Password 

 PIN 

 Pin code 

 Record 

 Savings 

 Savings account 

 Step 

 System 

 Transaction 

 Transaction history 

8.3.6 Reviewing the class purpose 

 Include classes with 

 Purpose 

 Clear definition  

 Necessary in achieving system goal 

 Eliminate classes with no purpose 

 Ex: Candidate class with purpose are 

 ATM machine class 

 ATM card class 

 Bankclient class 

 Bank class 

 Account class 

 Checking account class 

 Saving account class 

 Transaction class 

8.4 COMMON CLASS PATTERNS APPROACH 



 

78 
 

Classification 

 

NOTES 

Self-Instructional Material 

 

It was proposed by Shaler &Mellor, Ross, and Coad & Yourdon 

They have listed the following patterns for finding the candidate 

class and object  

Concept class: A concept is a particular idea or understanding that 

we have of our world. It consists of principles that are not tangible but used 

to organize or keep track business activities or communications. 

Ex: performance 

Events class: They are points in time that must be recorded.  

Associated with things remembered are attributes such as who, what, 

when, where, how, or why. 

Ex : landing, order, request 

Organization class: A collection of people, resources, facilities, or 

groups to which users belong, and their capabilities have a defined 

mission, whose existence is largely independent of individuals. 

Ex : human resources department 

People class: Known as person, roles, and roles played class. 

Represents the different roles users play in interacting with the application. 

What role does a person play in the system ? 

Ex : employee, student, lecturer 

Places class: Physical locations that the system must keep 

information about 

Ex : buildings, stores, offices 

Tangible things and devices class: Includes physical objects or 

groups of objects that are tangible and devices with which the application 

interacts 

Ex : car (tangible ), pressure sensors (devices). 

 

 

 

 

 

 

 

8.5 ANSWERS TO CHECK YOUR PROGRESS 

      QUESTIONS 

1. There are four approaches to identify classes. They are Noun 

phrase approach, Common class patterns approach, Use-case driven 

approach, Classes, responsibilities, & collaborators (CRC) 

approach. 

Check Your Progress 

1. What are the approaches available to identify classes? 

2. What is a redundant class? 

3. Define attribute classes. 

4. What is an organization class? 

 

 



 

79 
 

Classification 

 

NOTES 

Self-Instructional Material 

 

2. Redundant classes do not keep two classes that express the same 

information 

3. Attribute classes are tentative objects that are used only as values 

should be defined or restates as attributes and not as a class. 

4. An organization class is a collection of people, resources, facilities, 

or groups to which users belong, and their capabilities have a 

defined mission, whose existence is largely independent of 

individuals. 

8.6 SUMMARY 

 Identification of classes is the hardest part of part of OO 

Analysis. 

 Classification is the categorization of input data (things) into 

identifiable classes through the extraction of significant 

features of attributes of the data from a background of 

irrelevant detail. 

 The class name should be singular 

 One general rule for naming classes is that use names with 

which the users or clients are comfortable 

 The name of a class should reflect its intrinsic nature.,  

 Use readable name, Capitalize class names. 

 There are four approaches to identify classes. 

 Nouns in textual description are considered as classes 

 Nouns are listed and divided into three categories, relevant 

classes, fuzzy classes, irrelevant classes 

 Concept class concept is a particular idea or understanding that 

we have of our world 

 Events class is points in time that must be recorded 

 Organization class is a collection of people, resources, 

facilities, or groups to which users belong, and their 

capabilities have a defined mission, whose existence is largely 

independent of individuals. 

 People class is known as person, roles, and roles played class 

 Places class is a physical location that the system must keep 

information about 

 Tangible things and devices class which includes physical 

objects or groups of objects that are tangible and devices with 

which the application interacts. 

8.7 KEYWORDS 

 Classification 

 Nouns 

 Organization class 



 

80 
 

Classification 

 

NOTES 

Self-Instructional Material 

 

 Common class 

 Redundant class 

8.8 REVIEW QUESTIONS 

1. What are the approaches to identify classes? 

2. Describe the noun phrase strategy for identifying tentative classes 

in the problem domain? 

3. Describe relevant, fuzzy, irrelevant classes. 

4. How do you select candidate classes from the list of relevant and 

fuzzy classes? 

5. How to identify classes? Explain.  

6. What are event classes? 

7. What are organization classes? 

8. What are people classes? 

9. Write a note on common class patterns approach. 

10. Explain noun phrase approach in detail.  

8.9 FURTHER READINGS 

1. Booch G.,”Object Oriented Analysis And Design”,Addison- 

Wesley Publishing Company,1994.  

2. Anderson, Michael and Bergstrand, John, “Formalizing Use Cases 

with Message Sequence Charts”, 1995. 



 

81 
 

Use case driven approach 

NOTES 

Self-Instructional Material 

 

UNIT IX: Use Case Driven Approach 
Structure 

9.0 Introduction 

9.1 Objectives 

9.2 Association 

9.2.1 Identifying Associations 

9.2.2 Guidelines for Identifying Association 

9.2.3 Common Association Patterns 

9.2.4 Eliminate Unnecessary Associations 

9.3 Super – Sub class Relationships 

9.3.1 Guidelines for Identifying Super-sub Relationships 

9.4 A – Part – of Relationships – Aggregation 

9.4.1 A – Part – of Relationships Patterns 

9.5 Class Responsibility: Identifying Attributes 

9.6 Class Responsibility: Identifying Methods 

9.7 Class Diagram 

9.8 Answers to check your progress questions 

9.9 Summary 

9.10 Keywords 

9.11 Review Questions 

9.12 Further Readings 

9.0 INTRODUCTION 

All objects stand in relationship to others on whom they rely for 

services and control. The relationship among objects is based on the 

assumptions each makes about the other objects, including what operations 

can be performed and what behaviour results. 

The three types of relationships among objects are  

Association 

Super-Sub structure (also known as generalization hierarchy) 

Aggregation and a-part-of structure.  

9.1 OBJECTIVES 

After going through this unit, you will be able to:  

 Understand about associations 

 Describe relationships 

 Describe responsibility 

 Understand class diagrams 

 

9.2 ASSOCIATION 

Association represents a physical or conceptual connection between 

two or more objects. Binary associations are shown as lines connecting two 

class symbols. Ternary and higher-order associations are shown as 

diamonds connecting to a class symbol by lines, and the association name 

is written above or below the line.  

 



 

82 
 

Use case driven approach 

 

NOTES 

Self-Instructional Material 

 

9.2.1 Identifying Associations 

We need to identify the system’s responsibilities because 

responsibilities identify problems that are to be solved. A responsibility 

serves as a handle for discussing potential solutions. Once the system’s 

responsibilities are understood, we can start identifying the attributes of the 

system’s classes. 

The following questions can assists in identifying associations 

[Wirfs-Brock, ilkerson, &Wiener ]: 

 Is the class capable of fulfilling the required task by itself? 

 If Not, what does it need? 

 From what other class can it acquire what it needs? 

9.2.2 Guidelines for Identifying Association 

 A dependency between two or more classes may be an 

association. 

 A reference from one class to another is an association. 

9.2.3 Common Association Patterns 

 Location Association – next to, part of, contained in.  

 Communication Association – talk to, order to. 

 

9.2.4 Eliminate Unnecessary Associations 

Implementation association: It is concerned with the implementation 

design of the class within certain programming or development 

environment and not relationships among business objects. 

Ternary associations: It complicates the representation. 

Directed actions associations: It can be defined in terms of other 

associations. Since they are redundant, it is avoided. 

9.3 SUPER – SUB CLASS RELATIONSHIPS 

A class is part of hierarchy of classes, where the top class is the most 

general one and from it descend all other, more specialized classes. 

Represents the inheritance relationships between related classes 

Also known as generalization hierarchy 



 

83 
 

Use case driven approach 

NOTES 

Self-Instructional Material 

 

Advantage  

Can build on what already have and more important, reuse what 

already have 

Inheritance allows classes to share and reuse behaviours and 

attributes 

Example: Generalization hierarchy 

9.3.1 Guidelines for Identifying Super-sub Relationships: 

Top-down: Look for noun phrases composed of various adjectives on class 

name. Only specialize when the sub classes have significant behavior. 

Example, Military Aircraft and Civilian Aircraft. 

Bottom-up: Look for classes with similar attributes or methods. 

Group them by moving the common attributes and methods to super class. Do not 

force classes to fit a preconceived generalization structure. 

Reusability: Move attributes and methods as high as possible in the hierarchy. 

At the same time do not create very specialized classes at the top of hierarchy. This 

balancing act can be achieved through several iterations. 

Multiple inheritance: Avoid excessive use of multiple inheritances. It is also 

more difficult to understand programs written in multiple inheritance 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.4 A – PART – OF RELATIONSHIPS - AGGREGATION 

Represents the situation where a class consists of several component 

classes 

 
Multiple Inheritance 

Single 

Inheritance 

 

Aggregation 

Check Your Progress 

1. What is the use of responsibility? 

2. Define implementation association. 

3. How to identify relationship using top down approach? 

 

 



 

84 
 

Use case driven approach 

 

NOTES 

Self-Instructional Material 

 

A class that is composed of other classes does not behave like its 

part; actually ,it behaves very differently. 

 

 

 

 

 

 

 

 

 

 

 

 

Two major properties of an aggregation are: 

 Transitivity: the property where, if A is part of B and part B is 

part of C, then A is part of C. Ex : a carburetor is part of an 

engine, and engine is a part of a car, Therefore a carburetor is aprt 

of a car. 

 Antisymmetry: The property where, if A is part of B, then B is not 

part of A. 

Ex : An engine is aprt of car, BUT car is not part of an engine. 

9.4.1 A – Part – of Relationships  Patterns 

Assembly: An assembly is constructed from its parts and an 

assembly part situation physically exists. 

Container: A physical whole encompasses but it is not constructed 

from physical parts. 

Collection member: A conceptual whole encompasses parts that may 

be physical or conceptual.  

9.5 CLASS RESPONSIBILITY: IDENTIFYING 

      ATTRIBUTES 

 Attributes are things an object must remember 

 An attribute is a data definition held by instances of a class 

(object) 

 Attributes do not have behaviour, they are NOT objects 

 Attribute are simple nouns or noun phrases 

 names must be unique within a class 

 Each attribute should have a clear, concise definition 

 

Car 

 

Engine Radio 

Carburetor 



 

85 
 

Use case driven approach 

NOTES 

Self-Instructional Material 

 

 An attribute value is the value of an attribute for a particular 

object 

 Each object has a value for every attribute defined for its class 

 identifying attributes of a system’s classes starts with 

understanding the systems responsibilities 

 system’s responsibilities can be identified by developing use 

cases and the desired characteristics of the applications, such as 

determining what information users need from the system 

 The following questions help in identifying the responsibilities 

of classes and deciding what data elements to keep track of: 

 What information about an object should we keep track of 

to identify attributes of a class? 

 What services must a class provide to identify a class’s 

methods? 

 Many attributes are discovered in the flow of events for the use 

cases 

 Look for nouns that were not considered good candidate classes 

 Others are discovered when the class definition is created 

9.6 CLASS RESPONSIBILITY: IDENTIFYING 

       METHODS 

Objects not only describe abstract data but also must provide some 

services 

 In an object-oriented environment, every piece of data, or object is 

surrounded by a rich set of routines called methods. (These 

methods do everything from printing the object to initializing its 

variables) 

 Operations (methods or behavior) in the object-oriented system 

usually correspond to queries about attributes (and sometimes 

association) of the objects 

 An operation is a service that can be requested from an object to 

effect behavior 

 Methods are responsible for managing the value of attributes such 

as query, updating, reading, and writing; Example : operation 

GetBalance, return the value of an account’s balance 

 Operation should be name to indicate their outcome NOT the 

steps behind the operation. 

9.7 CLASS DIAGRAM 

 A class diagram shows a set of classes, interfaces, and their 

relationships 

 Model the static view of the system, which supports the functional 

requirements of the system 



 

86 
 

Use case driven approach 

 

NOTES 

Self-Instructional Material 

 

 Made up of the following basic elements : 

 Classes 

 Relationships 

 Associations 

 Aggregations 

 Generalizations 

 

 

 

 

 

9.8 ANSWERS TO CHECK YOUR PROGRESS  

      QUESTIONS 

1. A responsibility serves as a handle for discussing potential 

solutions. Once the system’s responsibilities are understood, we can 

start identifying the attributes of the system’s classes. 

2. Implementation association is concerned with the implementation 

design of the class within certain programming or development 

environment and not relationships among business objects. 

3. Look for noun phrases composed of various adjectives on class name. Only 

specialize when the sub classes have significant behavior. 

4. Transitivity is the property where, if A is part of B and part B is 

part of C, then A is part of C. 

5. An operation is a service that can be requested from an object to 

effect behavior. 

9.9 SUMMARY 

 The three types of relationships among objects are Association, 

Super-Sub 

 Structure, Aggregation and a-part-of structure. 

 Association represents a physical or conceptual connection 

between two or more objects. 

 Binary associations are shown as lines connecting two class 

symbols.  

 Ternary and higher-order associations are shown as diamonds 

connecting to a class symbol by lines, and the association name is 

written above or below the line.  

 A responsibility serves as a handle for discussing potential 

solutions.  

Check Your Progress 

4. What is transitivity? 

5. Define operations. 

 

 



 

87 
 

Use case driven approach 

NOTES 

Self-Instructional Material 

 

 A-part-of relationship, also called aggregation, represents the 

situation where a class consists of several component classes. 

 A class that is composed of other classes does not behave like its 

parts. 

 Transitivity is the property where, if A is part of B and part B is 

part of C, then A is part of C. 

 Antisymmetry is the property where, if A is part of B, then B is 

not part of A. 

9.10 KEYWORDS 

 Association 

 Relationship 

 Aggregation 

 Attributes 

 Methods 

 Antisymmetry 

 Transitivity 

9.11 REVIEW QUESTIONS 

1. What is association? 

2. What is generalization? 

3. How would you identify a super- subclass structure? 

4. What is an a-part-of structure? Write their properties. 

5. What guidelines would you use to identify a-part-of structure? 

6. Is association different from an a-part-of relation? 

7. What are unnecessary associations? How would you know? 

8. How do you identify attributes? 

9. How do you identify methods? 

10. What are the unnecessary attributes? 

11. Why do we need to justify classes with one attribute? 

12. List the guidelines for identifying super-sub relationships? 

9.12 FURTHER READINGS 

1. Bahrami, A.(1999). Object Oriented Systems Development, using 

the unified modeling language, McGraw-Hill 

2. Object Oriented Analysis and Design using UML, by Rational 

Software Corporation (2002) 



 

88 
 

 

NOTES 

Object oriented design 

Self-Instructional Material 

 

BLOCK 4: UNIT X: OBJECT 

ORIENTED DESIGN 

UNIT X: OBJECT ORIENTED DESIGN 

Structure 

 10.0 Introduction 

 10.1 Objectives  

 10.2 Object-Oriented Design Process and Design Axioms 

10.3 Activities of OOD Process 

10.4 Object Oriented Design Axioms 

10.5 Axioms of OOD 

10.6 Corollaries 

10.6.1 Types of corollaries 

10.7 Design Patterns 

10.8 Introduction to Designing Classes 

10.9 Object oriented design philosophy  

10.10 Designing classes: The Process 

10.11Class visibility: Designing well-defined public, private and 

protected protocols 

10.12 Designing classes: Refining attributes 

10.13 UML Attribute presentation 

10.14 Designing methods and protocols  

10.15 Design issues- avoiding design pitfall (drawbacks, difficulty)  

10.16 Packages and Managing Classes 

10.17 Answers to check your progress questions 

10.18 Summary 

10.19 Keywords 

10.20 Review Questions 

10.21 Further Readings 

10.0 INTRODUCTION 

Main focus of the analysis phase of SW development is “what needs 

to be done”. Objects discovered during analysis serve as the framework for 

design. Class’s attributes, methods, and associations identified during 

analysis must be designed for implementation as a data type expressed in 

the implementation language. 

During the design phase, we elevate the model into logical entities, 

some of which might relate more to the computer domain (such as user 

interface, or the access layer) than the real world or the physical domain 

(such as people or employees). Start thinking how to actually implement 

the problem in a program. The goal is to design the classes that we need to 

implement the system. Design is about producing a solution that meets the 

requirements that have been specified during analysis. 

 

 



 

89 
 

Object oriented design 

 

NOTES 

Self-Instructional Material 

 

10.1 OBJECTIVES 

After going through this unit, you will be able to:  

 Understand OOD design process and axioms 

 Describe axioms of OOD 

 Understand about corollaries 

 Understand the design patterns and classes 

 Understand UML attribute presentation 

 Understand the design issues 

 

10.2 OBJECT-ORIENTED DESIGN PROCESS AND 

        DESIGN AXIOMS 

•Analysis Phase  

–Class’s attributes, methods and associations are identified 

–Physical entities, players and their cooperation are 

identified 

–Objects can be individuals, organizations or machines 

•Design Phase 

–Using Implementation language appropriate data types are 

assigned 

–Elevate the model into logical entities (user interfaces) 

–Focus is on the view and access classes (How to maintain 

information or best way to interact with a user) 

Importance of Good Design 

 Time spent on design decides the success of the software 

developed. 

 Good design simplifies implementation and maintenance of a 

project. 

 To formalize (celebrate, honor) design process, axiomatic (clear) 

approach is to be followed 

 

 



 

90 
 

 

NOTES 

Object oriented design 

Self-Instructional Material 

 

10.3 ACTIVITIES OF OOD PROCESS 

1. Apply design axioms to design classes, their attributes, methods, 

associations, structure and protocols. 

1.1 Refine and complete the static UML class diagram by adding 

details to the UML class diagram. These steps consist of the 

following activities: 

1.1.1 Refine attributes 

1.1.2 Design methods and protocols by utilizing a UML 

activity diagram to represent the methods algorithm. 

1.1.3 Refine association between classes (if required) 

1.1.4 Refine class hierarchy and design with inheritance (if 

required). 

1.2 Iterate and refine again. 

2. Design the access layer 

2.1 Create mirror classes: For every business class identified and 

created, create one access layer 

Eg , if there are 3 business classes (class1, class2 and class3), create 

3 access layer classes (class1DB, class2DB and class3DB) 

2.2 Identify access layer class relationships  

2.3 Simplify classes and their relationships  

– Main goal is to eliminate redundant classes and structures 

2.3.1 Redundant classes: Do not keep two classes that 

perform similar translate request and translate results activities. 

Select one and eliminate the other. 

2.3.2 Method classes: Revisit the classes that consist of only 

one or two methods to see if they can be eliminated or combined 

with existing classes. 

 2.4 Iterate and refine again. 

3. Design the view layer classes 

3.1 Design the macro level user interface, identifying view layer 

objects 

 3.2 Design the micro level user interface, which includes these 

activities: 

3.2.1 Design the view layer objects by applying the design 

axioms and corollaries. 

3.2.2 Build a prototype of the view layer interface 

 3.3 Test usability and user satisfaction 

 3.4 Iterate and refine 

4.  Iterate and refine the whole design. Reapply the design axioms and if 

needed, repeat the preceding steps. 

10.4 OBJECT ORIENTED DESIGN AXIOMS 

An axiom is a fundamental truth that always is observed to be valid 

and for which there is no counterexample or exception.  

• They cannot be proven or derived but they can be invalidated by 

counter examples or exceptions. 

• A theorem is a proposition that may not be self-evident (clear) but 

can be proved from accepted axioms.  

• A corollary is a proposition that follows from an axiom or another 

proposition that has been proven. 



 

91 
 

Object oriented design 

 

NOTES 

Self-Instructional Material 

 

 

Types of Axioms 

• AXIOM-1 (Independence axiom): deals with relationships 

between systems  

components such as classes, requirements, software components. 

• AXIOM-2 (Information axiom): deals with the complexity of 

design 

10.5 AXIOMS OF OOD 

• The axiom 1 of object-oriented design deals with relationships 

between system components (such as classes, requirements and software 

components) and axiom 2 deals with the complexity of design. 

• Axiom 1 The independence axiom: Maintain the independence of 

components. According to axiom 1, each component must satisfy its 

requirements without affecting other requirements. Eg. Let us design a 

refrigerator door which can provide access to food and the energy lost 

should be minimized when the door is opened and closed. Opening the 

door should be independent of losing energy. 

• Axiom 2 The information axiom:  Minimize the information content of 

the design. It is concerned with simplicity. In object-oriented system, to 

minimize complexity use inheritance and the system’s built in classes and 

add as little as possible to what already is there. 

 

 

 

 

 

 

 

 

 

10.6 COROLLARIES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corollary 4 

co 

Axiom 1 

Axiom 2 

Corollary 6 
Corollary 5 

 

Corollary 1 

 

Corollary 2 

 

Corollary 3 

 

Check Your Progress 

1. Define method classes. 

2. Define axioms. 

3. What is the purpose of axiom2? 

 

 

 



 

92 
 

 

NOTES 

Object oriented design 

Self-Instructional Material 

 

10.6.1 Types of corollaries 

The design rules or corollaries derived from design axioms are 

stated below. 

• Corollary 1: Uncoupled design with less information content. 

• Corollary 2: Single purpose. 

• Corollary 3: Large number of simple classes. 

• Corollary 4: Strong mapping. 

• Corollary 5: Standardization. 

• Corollary 6: Design with inheritance. 

Coupling 

• Coupling is a measure of the strength of association established 

by a connection from one object or software component to another.  

• Coupling is a binary relationship. 

• For example A is coupled with B.  

• Coupling is important when evaluating a design because it helps 

us focus on an important issue in design. 

The degree of coupling 

• How complicated the connection is ? 

• Whether the connection refers to the object itself or something 

inside it. 

• What is being sent or received? 

Cohesion 

• Cohesion can be defined as the interactions within a single object 

or software component. 

Corollaries 

 Corollary 1: Uncoupled design with less information content. 

Highly cohesive (interconnected) objects can improve 

coupling because only a minimal amount of essential 

information need be passed between objects. 

 Corollary 2: Single purpose. Each class must have a single, 

clearly defined purpose. While documenting, one should be 

able to describe the purpose of a class in few sentences. 

 Corollary 3: Large number of simple classes. Keeping the 

classes simple allows reusability. 

 Corollary 4: Strong mapping. There must be a strong 

association between the physical system (analysis’s objects) 

and logical design (design’s object). 

 Corollary 5: Standardization. Promote standardization by 

designing inter changeable components and reusing existing 

classes or components. 

 Corollary 6: Design with inheritance. Common behavior 

(methods) must be moved to super classes. The superclass-

subclass structure must make logical sense. 



 

93 
 

Object oriented design 

 

NOTES 

Self-Instructional Material 

 

Corollary 1: Uncoupled Design with Less Information 

Content 

 Coupling is a measure of the strength of association established by 

a connection from one object or software component to another. 

Coupling is a binary relationship. It is important for design 

because a change in one component should have a minimal impact 

on the other components. 

 The degree or strength of coupling between 2 components is 

measured by the amount and complexity of information 

transmitted between them. 

 Object oriented design has 2 types of coupling: interaction 

coupling and inheritance coupling. 

 Interaction coupling involves the amount and complexity of 

messages between components. It is good to have little 

interaction. The general guideline is to keep the message as simple 

and infrequent as possible.  

 Objects connected to many complex messages are tightly coupled, 

meaning any change to one invariably leads to a ripple (current, 

flow) effect of changes in others.  

 Inheritance is a form of coupling between super and sub classes.  

 A subclass is coupled to its superclass in terms of attributes and 

methods. We need high inheritance coupling. For this each 

specialization class should not inherit lot of unrelated and 

unneeded methods and attributes. 

 If the superclass is overwriting most of the methods or not using 

them, then it is an indication that the inheritance coupling is low. 

Types of coupling among objects or components (highest to lowest) 

Name   Degree of coupling 

• Content coupling   Very high  

• Common coupling    High  

• Control coupling    Medium  

• Stamp coupling    Low  

• Data coupling    Very low  

Cohesion: The interactions within a single object or software component 

are called cohesion. 

 Cohesion reflects the “single-purposeness” of an object.  

 Highly cohesive components can lower coupling because only a 

minimum of essential information need be passed between 

components. 

 Method cohesion means that a method should carry one function.  

 A method that carries multiple functions is undesirable.  

 Class cohesion means that all the class’s methods and attributes 

must be highly cohesive, meaning to be used by internal methods 

or derived classes’ methods. 



 

94 
 

 

NOTES 

Object oriented design 

Self-Instructional Material 

 

Corollary 2: Single Purpose 

 Every class should be clearly defined and necessary in the context 

of achieving the system’s goals.  

 When we document a class, we should be able to explain its 

purpose in a sentence or two.  

 If we cannot, then the class should be subdivided into independent 

pieces.  

 Each method must provide only one service. 

 Each method should be of moderate size, no more than a page; 

half a page is better. 

Corollary 3: Large number of simpler classes, Reusability 

 There are benefits in having a large number of simpler classes 

because the chances of reusing smaller classes in other projects 

are high. 

 Large and complex classes are too specialized to be reused.  

 Object-oriented design offers a path for producing libraries of 

reusable parts. 

Why reusability is not used? Coad and Yourdan, Software 

engineering textbooks teach new practitioners to build systems from “first 

principles”; reusability is not promoted or even discussed 

 The “not invented here” syndrome (condition, pattern) and the 

intellectual (logical) challenge of solving an interesting software 

problem in one’s own unique way mitigates against reusing 

someone else’s software component. 

 Unsuccessful experiences with software reusability in the past 

have convinced many practitioners and development managers 

that the concept is not practical. 

 Most organizations provide no reward for reusability; sometimes 

productivity (output, efficiecy) is measured in terms of new lines 

of code written plus a discounted credit  

Corollary 4: Strong mapping 

 A strong mapping links classes identified during analysis and 

classes designed during the design phase eg view and access 

classes.  

 The analyst identifies objects’ types and inheritance, and thinks 

about events that change the state of objects.  

 The designer adds detail to this model perhaps designing screens, 

user interaction, and client-server interaction. 

Corollary 5: Standardization 

 To reuse classes, we must have a good understanding of the 

classes.  



 

95 
 

Object oriented design 

 

NOTES 

Self-Instructional Material 

 

 Most object-oriented systems come with several built-in class 

libraries.  

 But these class libraries are not always well documented.  

 Sometimes they are documented, but not updated.  

 They must be easily searched, based on users’ criteria. 

Corollary 6: Designing with inheritance 

 When we implement a class, we have to determine its ancestor, 

what attributes it will have, and what messages it will understand.  

 Then we have to construct its methods and protocols.  

 Ideally, one has to choose inheritance to minimize the amount of 

program instructions. 

 The primitive form of reuse is cut-and-paste reusability. 

Achieving Multiple inheritance in a Singe Inheritance System 

 Single inheritance means that each class has only a single super 

class.  

 The result of using a single inheritance hierarchy is the absence of 

ambiguity as to how an object will respond in a given method;  

 We simply trace up the class tree beginning with the object’s 

class, looking for a method of the same name. 

 But languages like LISP or C++ have a multiple inheritance 

scheme whereby objects can inherit behaviour from unrelated 

areas of the class tree.  

 The complication here is how to determine which behaviour to get 

from which class, particularly when several ancestors define the 

same method.  

 One way of resolving this is to inherit from the most appropriate 

class and add an object of mother class as an attribute or 

aggregation. The other is to use the instance of the class (object) 

as an attribute. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Single Inheritance 

 

Motor Vehicle 

Private Vehicle Commercial Vehicle 



 

96 
 

 

NOTES 

Object oriented design 

Self-Instructional Material 

 

 

 

 

 

 

 

 

 

 

 

10.7 DESIGN PATTERNS 

 A design pattern provides a scheme for refining the subsystem or 

components of a software system or the relationships among 

them.  

 They allow systems to share knowledge about their design, by 

describing commonly recurring structures of communicating 

components that solve a general design problem within a 

particular context  

10.8 INTRODUCTION TO DESIGNING CLASSES 

Most important activity in designing an application is coming up 

with a set of classes that work together to provide the needed functionality. 

Underlying the functionality of any application is the quality of its design. 

OCL (Object Constraint Language- a specification language, provided by 

UML )  specifies the properties of a system. 

 Object-oriented design requires taking the object identified during 

object oriented analysis and designing classes to represent them. 

 As a class designer, we have to know the specifics of the class we 

are designing and also we should be aware of how that class 

interacts with other classes.  

10.9 OBJECT ORIENTED DESIGN PHILOSOPHY  

 Here in terms of classes, as new facts are acquired, we relate them 

to existing structures in our environment (model).  

 After enough new facts are acquired about a certain area, we 

create new structures to accommodate the greater level of detail in 

our knowledge. 

    Multiple Inheritance 

Motor Vehicle 

Private Vehicle 

Commercial 

Vehicle 

Food Truck 

Restaurant 



 

97 
 

Object oriented design 

 

NOTES 

Self-Instructional Material 

 

 The important activity in designing an application is coming up 

with a set of classes that work together to provide the functionality 

we desire. 

 If we design the classes with reusability in mind, we will gain a 

lot of productivity and reduce the time for developing new 

applications. 

10.10 DESIGNING CLASSES: THE PROCESS 

1. Apply design axioms to design classes, their attributes, 

methods, associations, structure and protocols. 

1.1 Refine and complete the static UML class diagram 

by adding details to that diagram. 

 1.1.1 Refine attributes 

 1.1.2 Design methods and the protocols by utilizing 

a UML activity diagram to represent the methods 

algorithm. 

 1.1.3 Refine the associations between classes 

 1.1.4 Refine the class hierarchy and design with 

inheritance  

  1.2 Iterate and Refine  

 

10.11CLASS VISIBILITY: DESIGNING WELL-DEFINED 

          PUBLIC, PRIVATE AND PROTECTED 

          PROTOCOLS 

 In designing methods or attributes for classes, we are confronted 

(deal) with two problems.  

 One is the protocol or interface to the class operations and its 

visibility and the other is how it is implemented.  

 The class’s protocol or the messages that a class understands, can 

be hidden from other objects (private protocol) or made available 

to other objects (public protocol).  

 Public protocols define the functionality and external messages of 

an object.  

 Private protocols define the implementation of an object.  

Visibility 

 A class might have a set of methods that it uses only internally, 

messages to itself. This private protocol of the class, includes 

messages that normally should not be sent from other objects. 

Here only the class itself can use the methods.  

 The public protocol defines the stated behavior of the class as a 

citizen in a population and is important information for users as 

well as future descendants, so it is accessible to all classes. If the 



 

98 
 

 

NOTES 

Object oriented design 

Self-Instructional Material 

 

methods or attributes can be used by the class itself (or its 

subclasses) a protected protocol can be used. Here subclasses can 

used the method in addition to the class itself. 

 The lack of well-designed protocol can manifest itself as 

encapsulation leakage. It happens when details about a class’s 

internal implementation are disclosed through the interface. 

Encapsulation leakage 

 Encapsulation leakage is lack of a well-designed protocol  

 The problem of encapsulation leakage occurs when details about a 

class’s internal implementation are disclosed through the 

interface.  

 As more internal details become visible, the flexibility to make 

changes in the future decreases. 

Visibility types 

 In UML the following types are used to specify export control 

 + Public,  

 # Protected 

 Private 

 

 

 

 

 

 

 

 

10.12 DESIGNING CLASSES: REFINING ATTRIBUTES 

 Attributes identified in object-oriented analysis must be refined 

with an eye on implementation during this phase.  

 In the analysis phase, the name of the attribute is enough.  

 But in the design phase, detailed information must be added to the 

model.  

 The 3 basic types of attributes are: (1) Single-value attributes (2) 

Multiplicity or multivalue attributes (3) Reference to another 

object or instance connection 

Attributes  

 Attributes represent the state of an object. 

Check Your Progress 

4. Define coupling. 

5. What is cohesion? 

6. Define design patterns. 

7. Expand OCL and explain the purpose of it. 

8. When an encapsulation leakage occurs explain? 

9. List the types of visibility. 

 

 

 



 

99 
 

Object oriented design 

 

NOTES 

Self-Instructional Material 

 

 When the state of the object changes, these changes are 

reflected in the value of attributes.  

 Single value attribute has only one value or state. (Eg). Name, 

address, salary  

 Multiplicity or multivalue attribute can have a collection of 

many values at any time. 

 (Eg) If we want to keep tact of the names of people who have 

called a customer support line for help, we use multi value 

attribute 

 Instance connection attributes are required to provide the 

mapping needed by an object to fulfill its responsibilities.  

 (E.g.) A person may have one or more bank accounts.  

 A person has zero to many instance connections to Account(s). 

 Similarly, an Account can be assigned to one or more person(s) 

(joint account).  

 So an Account has zero to many instance connection to 

Person(s).  

10.13 UML ATTRIBUTE PRESENTATION 

 During design, OCL (Object Constraint Language) can be used to 

define the class attributes  

OCL  

 The rules and semantics of the UML are expressed in English, in a 

form known as object constraint language.  

 Object constraint language (OCL) is a specification language that 

uses simple logic for specifying the properties of a system. 

The following is the attribute presentation suggested by UML: 

Visibility name: type-expression=initial-value 

Where visibility is one of the following: 

+ public visibility (Accessibility to all classes) 

# protected visibility (Accessibility to subclasses and operations of 

the class) 

 - private visibility (Accessibility only to operations of the class) 

10.14 DESIGNING METHODS AND PROTOCOLS  

 A class can provide several types of methods:  

 Constructor: Method that creates instances (objects) of the class  

 Destructor: The method that destroys instances  

 Conversion Method: The method that converts a value from one 

unit of measure to another.  



 

100 
 

 

NOTES 

Object oriented design 

Self-Instructional Material 

 

 Copy Method: The method that copies the contents of one 

instance to another instance 

 Attribute set: The method that sets the values of one or more 

attributes  

 Attribute get: The method that returns the values of one or more 

attributes  

 I/O methods: The methods that provide or receive data to or from 

a device  

 Domain specific: The method specific to the application. 

Design goals  

 To maximize cohesiveness (interconnection) among objects and 

software components to improve coupling (combination, pairing), 

because only a minimal amount of essential information should be 

passed between components.  

 Abstraction leads to simplicity and straight- forwardness and, at 

the same time, increases class versatility (flexibility, 

resourcefulness, usefulness).  

Five rules/ characteristics of bad design  

 If it looks messy (confused, disorder), then it’s probably a bad 

design.  

 If it is too complex, then it’s probably a bad design. 

 If it is too big, then it’s probably a bad design.  

 If people don’t like it, then it’s probably a bad design.  

 If it doesn’t work, then it’s probably a bad design.  

10.15 DESIGN ISSUES- AVOIDING DESIGN PITFALL 

           (DRAWBACKS, DIFFICULTY)  

 Apply design axioms to avoid common design problems and 

pitfalls.  

 Much better to have a large set of simple classes than a few large, 

complex classes.  

Possible actions to solve design problems 

 Keep a careful eye on the class design and make sure that an 

object’s role remains well defined. If an object loses focus, you 

need to modify the design. Apply corollary-2  

 Move some functions into new classes that the object would use, 

Apply corollary 1. • Break up the class into two or more classes. 

Apply corollary 3. 

 Rethink the class definition based on experience gained.  

 

 



 

101 
 

Object oriented design 

 

NOTES 

Self-Instructional Material 

 

10.16 PACKAGES AND MANAGING CLASSES 

 A package groups and manages the modeling elements, such as 

classes, their associations and their structures.  

 Packages themselves may be nested within other packages. 

 A package may contain both other packages and ordinary model 

elements. 

 A package provides a hierarchy of different system components 

and can reference other packages. 

 Classes can be packaged based on the services they provide or 

grouped into the business classes, access classes and view classes.  

 

 

 

 

 

 

10.17 ANSWERS TO CHECK YOUR PROGRESS 

          QUESTIONS 

1.  Method classes revisit the classes that consist of only one or two 

methods to see if they can be eliminated or combined with existing 

classes. 

 

2. An axiom is a fundamental truth that always is observed to be 

valid and for which there is no counterexample or exception.  

 

3. Axiom2 minimizes the information content of the design. It is 

concerned with simplicity. 

 

4. Coupling is a measure of the strength of association established 

by a connection from one object or software component to another. 

5. Cohesion can be defined as the interactions within a single object 

or software component. 

6. A design pattern provides a scheme for refining the subsystem or 

components of a software system or the relationships among them.  

7. OCL (Object Constraint Language- a specification language, 

provided by UML )  specifies the properties of a system. 

8. The problem of encapsulation leakage occurs when details about 

a class’s internal implementation are disclosed through the 

interface.  

Check Your Progress 

10. What are the types of attributes? 

11. What is a constructor? 

12. Define package. 

 

 

 



 

102 
 

 

NOTES 

Object oriented design 

Self-Instructional Material 

 

9. The visibility types are Public, Protected, Private. 

10. The 3 basic types of attributes are: (1) Single-value attributes 

(2) Multiplicity or multivalue attributes (3) Reference to another 

object or instance connection. 

11. Constructor is a method that creates instances (objects) of the 

class. 

12. A package groups and manages the modeling elements, such as 

classes, their associations and their structures.  

 

10.17 SUMMARY 

 The basic goal of the axiomatic approach is to formalize the 

design process and assist in establishing a scientific foundation for 

the object-oriented design process, so as to provide a fundamental 

basis for the creation of systems.  

 Without scientific principles, the design field never will be 

systematized and so will be difficult to comprehend, codify, teach 

and practice.  

 The main activities in design process are ◊ Designing classes 

(their attributes, methods, associations, structures, and protocols) 

and applying design axioms. ◊ Designing the access layer. ◊ 

Designing the user interface (view layer classes). ◊ Testing user 

satisfaction and usability, based on the usage and use cases. ◊ 

Iterating and refining the design.  

 An axiom is a fundamental truth that always is observed to be 

valid and for which there is no counterexample or exception.  

 The axioms cannot be proven or derived but they cannot be 

invalidated by counterexamples or exceptions.  

 Axiom 1 deals with relationships between system components and 

Axiom 2 deals with the complexity of design.  

 A corollary is a proposition that follows from an axiom or another 

proposition that has been proven.  

 A corollary is shown to be valid if its referent axioms and 

deductive steps are valid.  

 Corollary 1: Uncoupled design with less information content.  

 Corollary 2: Single purpose.  

 Corollary 3: Large number of simple classes.  

 Corollary 4: Strong mapping.  

 Corollary 5: Standardization.  

 Corollary 6: Design with inheritance. 



 

103 
 

Object oriented design 

 

NOTES 

Self-Instructional Material 

 

 Private protocol of the class includes messages that normally 

should not be sent from other objects. The messages are accessible 

only to operations of that class. Only the class itself can use the 

method.  

 The public protocol defines the stated behaviour of the class so 

that it is accessible to all classes.  

 In a protected protocol, subclasses can use the method in addition 

to the class itself. 

10.18 KEYWORDS 

 Design Axioms 

 Corollary 

 Coupling 

 Cohesion 

 Mapping 

 Visibility 

 OCL 

10.19 REVIEW QUESTIONS 

1. What is the task of design?  

2. What is the significance of Occam’s razor?  

3. Define axiom.  

4. Define theorem and corollary.  

5. What is coupling?  

6. State the different type of coupling.  

7. Define cohesion.  

8. What is basic activity in designing an application?  

9. List the Object Oriented design axioms and corollaries. 

10. What is the relationship between coupling and cohesion? 

11. What are public and private protocols? What is the significance 

of separating these two protocols? 

12. What are some characteristics of a bad design? 

13. How do design axioms help avoid design pitfalls?  

14. List out the type of attributes. Explain them 

15. How is an attribute represented in the UML? 

16. How is an operation represented in the UML?  

17. Define Encapsulation Leakage  

18. What is OCL?  

19. What is the use of protected protocol? 



 

104 
 

 

NOTES 

Object oriented design 

Self-Instructional Material 

 

10.20 FURTHER READINGS 

1.   Bahrami, A.(1999). Object Oriented Systems Development, 

Using the unified modeling language, McGraw-Hill   

2. Object Oriented Analysis and Design using UML, by Rational 

Software Corporation (2002) 



 

105 
 

Designing methods 

 

NOTES 

Self-Instructional Material 

 

UNIT XI – DESIGNING METHODS 

Structure 
11.0 Introduction 

11.1 Objectives 

11.2 Access Layer: Object storage and object interoperability 

11.2.1 Object Store and Persistence  

11.3 Database Models 

11.3.1 Hierarchical model  

11.3.2 Network Model  

11.3.3 Relational Model  

11.4 Database Interface  

11.4.1 Database Schema and Data Definition Language  

11.4.2 Data Manipulation Language and Query Capabilities  

11.5 Logical and Physical Database Organization and Access       

Control  

11.5.1 Shareability and Transactions 

11.5.2 Transactions  

11.5.3 Concurrency Policy  

11.5.4 Concurrency issues  

11.6 Distributed Databases and Client-Server Computing  

11.6.1 Client-Server Computing  

11.7 Distributed and Cooperative Processing  

11.8 Common Object Request Broker Architecture  

11.9 Microsoft’s ActiveX/DCOM  

11.10 Object –Oriented Database Management Systems 

11.10.1 Rules to make object-oriented system  

11.11 Object oriented databases versus Traditional Databases  

11.12 Distributed Databases  

11.13 Object-relational systems  

11.14 Object- Relation Mapping  

11.14.1 Table-class mapping  

11.14.2 Table-multiple classes mapping  

11.14.3 Table – Inherited Classes Mapping 

11.15 Multi database Systems  

11.15.1 ODBC  

11.16 Designing Access Layer Classes  

11.16.1 Advantage of this approach  

11.17 Design the access layer  

11.18 Introduction to View Layer  

11.19 User Interface Design Rules 

11.20 Purpose of View Layer Interface  

11.21 Guidelines for designing Forms and Data Entry Window  

11.22 Guidelines for designing Dialog boxes and Error messages 

11.23 Guidelines for the Command Buttons  

11.24 Application Windows (Main Window) 

11.25 Answers to check your progress questions 

11.26 Summary 

11.27 Keywords  

11.28 Review Questions 



 

106 
 

 

NOTES 

Designing methods 

 

Self-Instructional Material 

 

11.29 Further Readings 

11.0 INTRODUCTION 

 DBMS = is a set of programs that enables the creation and 

maintenance of a collection of related data provide a reliable, 

persistent 

 Fundamental purpose of a DBMS data storage facility and the 

mechanisms for efficient, convenient data access and retrieval  

 In an OO system, it concerns both persistent objects and 

transient objects.   

 Transient data - data that will be erased from memory after 

they have been used   

Persistent data system, data that must be stored in secondary data 

storage not just in computer memory, that must be stored after the program 

that creates or amends it stops running, and that usually must be available 

to other users  

11.1 OBJECTIVES 

After going through this unit, you will be able to:  

 Understand about access layer 

 Understand Database model 

 Describe Database interface 

 Understand about client server computing & distributed databases 

 Understand about CORBA 

 Understand Object oriented database system 

 Describe view layer 

11.2 ACCESS LAYER: OBJECT STORAGE AND 

        OBJECT INTEROPERABILITY 

 A Date Base Management System (DBMS) is a set of programs 

that enables the creation and maintenance (access, manipulate, 

protect and manage) of a collection of related data. 

 The purpose of DBMS is to provide reliable, persistent data 

storage and mechanisms for efficient, convenient data access and 

retrieval.  

 Persistence refers to the ability of some objects to outlive the 

programs that created them.  

 Object lifetimes can be short for local objects (called transient 

objects) or long for objects stored indefinitely in a database 

(called persistent objects). Persistent stores  

 Most object-oriented languages do not support serialization or 

object persistence, which is the process of writing or reading an 

object to and from a persistence storage medium, such as disk file.  



 

107 
 

Designing methods 

 

NOTES 

Self-Instructional Material 

 

 Unlike object oriented DBMS systems, the persistent object stores 

do not support query or interactive user interface facilities. 

 Controlling concurrent access by users, providing ad-hoc query 

capability and allowing independent control over the physical 

location of data are not possible with persistent objects.  

11.2.1 Object Store and Persistence  

Each item of data will have a different lifetime. These lifetimes are 

categories into six, namely  

1. Transient results to the evaluation of expressions.  

2. Variable involved in procedure activation (parameters and 

variables with a localized scope)  

3. Global variable and variables that are dynamically allocated  

4. Data that exist between the executions of a program  

5. Data that exist between the versions of a program.  

6. Data that outlive a program.  

Typically, programming languages provide excellent, integrated 

support for the first three categories of transient data. The other three 

categories can be supported by a DBMS, or a file system. A file or a 

database can provide a longer life for objects – longer than the duration of 

the process in which they were created. From a language perspective, this 

characteristic is called persistence.  

Essential elements in providing a persistent store are:  

¾ Identification of persistent objects or reachability (Object ID) 

 ¾ Properties of objects and their interconnections. The store must be 

able to coherently manage nonpointer and pointer data. (i.e interobject 

references)  

¾ Scale of the object store. The object store should provide a 

conceptually infinite store.  

¾ The system should be able to recover from unexpected failures and 

return the system to a recent self-consistent state.  

11.3 DATABASE MODELS 

A database model is a collection of logical constructs used to 

represent the data structure and data relationships within the database. The 

conceptual model focuses on the logical nature of that data presentation. It 

is concerned with what is represented in the database and the 

implementation model is concerned with how it is represented. 

11.3.1 Hierarchical model  

This model represents data as a single rooted tree. Each node in the 

tree represents a data object and the connection represents a parent-child 

relationship.   

 



 

108 
 

 

NOTES 

Designing methods 

 

Self-Instructional Material 

 

 

 

 

 

 

 

 

 

11.3.2 Network Model  

This is similar to a hierarchical database, with one difference. Here 

record can have more than one parent. Each parent can have any number of 

child nodes and each child node can have any number of parent nodes. 

 

 

 

 

 

 

11.3.3 Relational Model  

 It is simple and widespread. Here the relation can be thought of as 

a table.  

 The columns of each table are attributes that define the data or 

value domain for entries in that column.  

 The rows of each table are tuples representing individual data 

objects being stored. 

 A relational table should have only one primary key. 

 A primary key is a combination of one or more attributes whose 

value unambiguously (clearly) locates each row in the table.  

 A foreign key is a primary key of one table that is embedded in 

another table to link the tables. 

11.4 DATABASE INTERFACE  

 The interface on a database must include a data definition 

language (DDL), a query and data manipulation language (DML). 

These languages must be designed to reflect the flexibility and 

 
Motor Vehicle 

Bus Truck Car 

 

Customer Soup 

Order 



 

109 
 

Designing methods 

 

NOTES 

Self-Instructional Material 

 

constraints inherent in the data model. Databases have adopted 2 

approaches for interfaces with the system.  

 One is to embed a database language such as structured query 

language (SQL), in the host programming language. The problem 

here is that application programmers have to learn and use two 

different languages. The application programmers have to 

negotiate the differences in the data models and data structures 

allowed in both languages.  

 Another approach is to extend the host programming language 

with database related constructs. Here application programmers 

need to learn only a new construct of the same language rather 

than a completely new language. Eg. GemStone from Servio 

Logic has extended the Smalltalk object-oriented programming.  

11.4.1 Database Schema and Data Definition Language  

 DDL is the language used to describe the structure of and 

relationships between objects stored in a database. This structure 

of information is termed the database schema. In traditional 

databases, the schema is the collection of record types and set 

types or the collection of relationships and table records to store 

information about entities of interest to the application. 

 E.g.. CREATE TABLE inventory (Inventory_Number CHAR(10) 

NOT NULL Description CHAR(25) NOT NULL Price 

DECIMAL (9,2));  

11.4.2 Data Manipulation Language and Query Capabilities  

 Asking Questions, formally making queries of the data – is a 

typical and common use of a database. A query is expressed 

through a query language. A Data Manipulation Language (DML) 

is the language that allows users to access and manipulate (such as 

create, save or destroy) data organizations. The SQL is the 

standard DML for relational DBMSs. The query usually specifies  

 The domain of the discourse over which to ask the query  

 The elements of general interest 

 The conditions or constraints that apply  

 The ordering, sorting or grouping of elements and the constraints 

that apply to the ordering or grouping  

DML  

 Query processes have sophisticated “engines” that determine the 

best way to approach the database and execute the query over it. 

They may use the information in the database or knowledge of the 

whereabouts of particular data in the network to optimize the 

retrieval of a query.  

 DML are either procedural or nonprocedural. A Procedural DML 

requires users to specify what data are desired and how to get the 

data. 



 

110 
 

 

NOTES 

Designing methods 

 

Self-Instructional Material 

 

 A non-procedural DML requires users to specify what data are 

needed but not how to get the data. Object-oriented query and data 

manipulation languages, such as Object SQL, provide object 

management capabilities to the data manipulation language.  

 In a relational DBMS, the DML is independent of the host 

programming language.  

 A host language such as C or COBOL would be used to write the 

body of the application. SQL statements then are embedded in C 

or COBOL applications to manipulate data.  

 Once SQL is used to request and retrieve database data, the results 

of the SQL retrieval must be transformed into the data structures 

of the programming language. 

 The drawback here is that the programmers code here in two 

languages, SQL and the host language. 

 

 

 

 

 

 

 

 

11.5 LOGICAL AND PHYSICAL DATABASE 

ORGANIZATION AND ACCESS CONTROL  

Logical database organization refers to the conceptual view of 

database structure and the relationships within the database. Physical 

database organization refers to how the logical components are represented 

in a physical form by operating system constructs eg objects may be 

represented as files.  

11.5.1 Shareability and Transactions 

Data and objects in the database need to be accessed and shared by 

different applications. With multiple applications having access to the 

object concurrently, it is likely that conflicts over object access will arise. 

The database must detect and mediate these conflicts and promote 

maximum amount of sharing without any data integrity problem. This 

mediation process is managed through concurrency control policies, 

implemented, by transactions.  

11.5.2 Transactions  

Transaction is a unit of change in which many individual 

modifications are aggregated into a single modification that occurs in its 

entirety or not at all. Thus either all changes to objects within a given 

transaction are applied to the database or none of the changes. A 

Check Your Progress 

1. Define DBMS. 

2. Give the purpose of DBMS. 

3. Define database model. 

4. Define primary key 

5. Define DDL 

6. Define DML 

 

 

 

 



 

111 
 

Designing methods 

 

NOTES 

Self-Instructional Material 

 

transaction is said to commit if all changes can be made successfully to the 

database and to abort if cancelled because all change to the database cannot 

be made successfully. This ability of transactions ensures atomicity of 

change that maintains the database in a consistent state. 

Many transaction systems are designed for short transactions (lasting 

for minutes). They are less suitable for long transactions, lasting hours. 

Object databases are designed to support both short and long transactions. 

A concurrent control policy dictates what happens when conflicts arise 

between transactions that attempt to access to the same object and how 

these conflicts are to be resolved.  

11.5.3 Concurrency Policy  

When several users attempt to read and write the same object 

simultaneously, they create a contention (conflict) for object. Then 

concurrency control mechanism is established to mediate such conflicts by 

making policies that dictate how they will be handled.  

To provide consistent view, the transactions must occur in serial 

order. A user must see the database as it exists before a given transaction 

occurs or after the transaction.  

11.5.4 Concurrency issues  

 The conservative way of enforcing serialization is to allow a user 

to lock all objects or records when they are accessed and to 

release the locks only after a transaction commits. This is called 

conservative or pessimistic policy. It provides exclusive access to 

the object, despite what is done to it. The policy is conservative 

because no other user can view the data until the object is 

released.  

 By distinguishing between querying (reading) the object and 

writing to it, greater concurrency can be achieved. This policy 

allows many readers of an object but only one writer.  

 Under an optimistic policy, two conflicting transactions are 

compared in their entirety and then their serial ordering is 

determined.  

 A process can be allowed to obtain a read lock on an object 

already write locked if its entire transaction can be serialized as if 

it occurred either entirely before or entirely after the conflicting 

transaction.  

 The reverse also is true. A process may be allowed to obtain a 

write lock on an object that has a read lock if its entire transaction 

can be serialized as if it occurred after the conflicting transaction. 

Now the optimistic policy allows more processes to operate 

concurrently than the conservative policy. 

11.6 DISTRIBUTED DATABASES AND CLIENT- 

        SERVER COMPUTING  

 In distributed databases, portions of the database reside on 

different nodes and disk drives in the network.  



 

112 
 

 

NOTES 

Designing methods 

 

Self-Instructional Material 

 

 Each portion of the database is managed by a server.  

 The server sends information to client applications and makes 

queries or data requests to these client applications or other 

servers.  

11.6.1 Client-Server Computing  

 It is the logical extension of modular programming. In modular 

programming we separate a large piece of software into its 

constituent parts (modules). This makes development easier and 

gives better maintainability. 

 In client-server computing all those modules are not executed 

within the same memory space or even on the same machine. 

Here the calling method becomes “client” and the called module 

becomes the “server”.  

 The important component of client-server computing is 

connectivity, which allows applications to communicate 

transparently with other programs or processes, regardless of their 

locations. The key element of connectivity is the network 

operating system (NOS), known as middleware. The NOS 

provides services such as routing, distribution, messages, filing, 

printing and network management.  

 Client programs manage user interface portion of the application, 

validate data entered by the user, dispatch requests to server 

program and executes business logic. The business layer contains 

all the objects that represent the business.  

 The client-based process is the front-end of the application, which 

the user sees and interacts with. It manages the local resource with 

which the user interacts, such as the monitor, keyboard, 

workstation, CPU and peripherals.  

 A key component of a client workstation is the graphical user 

interface (GUI). It is responsible for detecting user actions, 

managing the Windows on the display and displaying the data in 

the Windows. 

 The server process performs back-end tasks. 

 Client – Node that request for a service  

 Server – Node that services the request.  

 Client Server computing is the logical extension of modular 

programming.  

 The fundamental concept behind the modular programming is 

decomposing the larger software in to smaller modules for easier 

development and maintainability. 

 Client Server computing is developed by extending this concept 

i.e, modules are allowed to execute in different nodes with 

different memory spaces.  



 

113 
 

Designing methods 

 

NOTES 

Self-Instructional Material 

 

 The module that needs and request the service is called a client 

and the module that gives the service is called a server.  

 The network operating system is the back bones of this client 

server computing.  

 It provides services such as routing, distribution, messages, filing 

and printing and network management. This Network Operating 

System (NOS) is called middleware.  

Client Program: 

 It sends a message to the server requesting a service (task done by 

server).  

 Manages User Interface portion of the application.  

 Performs validation of data input by the user.  

 Performs business logic execution (in case of 2 tier).  

 Manages local resources.  

 Mostly client programs are GUI.  

 Server Program:  

 Fulfills the task requested by the client.  

 Executes database retrieval and updation as requested by the 

client.  

 Manages data integrity and dispatches results to the client.  

 Some cases a server performs file sharing as well as application 

services.  

 Uses power full processors and huge storage devices.  

 File Server – Manages sharing of files or file records. Client sends 

a message to the file server requesting a file or file record. The 

File Server checks the integrity and availability of file/record. 

 Data Base Servers – Client pass the SQL query in the form of 

messages to the server in turn server performs the query and 

dispatches the result.  

 Transaction Servers – Client sends message to the server for a 

transaction (set of SQLstatements) where the transaction succeeds 

or fails entirely. 

 Application Servers – Application servers need not to be database 

centric. They may serve any of user needs such as sending mails, 

regulating download.  

Characteristics of Client Server Computing  

1. A combination of client/ front end process that interacts with the 

user and server/ backend process that interacts with the shared 

resources.  



 

114 
 

 

NOTES 

Designing methods 

 

Self-Instructional Material 

 

2. The front end and back end task have different computing 

resource requirements.  

3. The hardware platform and operating system need not be the 

same.  

4. Client and Server communicate through standard well defined 

Application Program Interface(API).  

5. They are scalable. 

 File server Vs Database server  

 The server can take different forms. The simplest form of server is 

a file server. With a file server, the client passes requests for files 

or file records over a network to the file server. This needs a large 

bandwidth and can slow down a network with many users. 

Traditional LAN computing allows users to share resources such 

as data files and peripheral devices.  

 Advanced forms of servers are database servers, transaction 

servers, and application servers and object servers. With database 

servers, clients pass SQL requests as messages to the server and 

the results of the query are returned over the network. Both the 

code that processes the SQL request and the data reside on the 

server, allowing it to sue its own processing power to find the 

requested data. This is in contrast to the file server, which requires 

passing all the records back to the client and then letting the client 

find its own data.  

Transaction Servers  

 With transaction servers, clients invoke remote procedures that 

reside on servers, which also contain an SQL database engine. 

The server has procedural statements to execute a group of SQL 

statements (transactions), which either all succeed or fail as a unit.  

 Applications based on transaction servers, handled by on-line 

transaction processing (OLTP), tend to be mission-critical 

applications that always require a 1-3 second response time and 

tight control over the security and integrity of the database. The 

communication overhead in this approach is kept to a minimum, 

since the exchange consists of a single request and reply (as 

opposed to multiple SQL statements in database servers).  

N-tier architecture 

 In a two-tier architecture, a client talks directly to a server, with 

no intervening server. This type of architecture is used in small 

environments with less than 50 users. To scale up to hundreds or 

thousands of users, it is necessary to move to a 3-tier architecture. 

 Three-tier architecture introduces a server between the client and 

the server. The role of the application or Web server is manifold. 

It can provide translation services, metering services (transaction 

monitor to limit the number of simultaneous requests to a given 

server) or intelligent agent services (mapping a request to a 



 

115 
 

Designing methods 

 

NOTES 

Self-Instructional Material 

 

number of different servers, collating the results, and returning a 

single response to the client). 

Basic characteristics of client-server architectures  

 The client process contains solution-specific logic and provides 

the interface between the user and the rest of the application 

system. The server process acts as a software engine that manages 

shared resources such as databases, printers, modems or 

processors.  

 The front end task and back-end task have fundamentally different 

requirements for computing resources such as processor speeds, 

memory, disk speeds and capacities and i/o devices.  

 The environment is heterogeneous and multivendor. The h/w 

platform and o/s of client and server are not the same.  

 They can be scaled horizontally and vertically. Horizontal scaling 

means adding or removing client workstations with only a slight 

performance impact. Vertical scaling means migrating to a larger 

and faster server machine.  

11.7 DISTRIBUTED AND COOPERATIVE PROCESSING  

 Distributed processing means distribution of applications and 

business logic across multiple processing platforms. It implies that 

processing will occur on more than one processor to complete a 

transaction. The processing is distributed across 2 or more 

machines, where each process performs part of an application in a 

sequence. These processes may not run at the same time.  

 Cooperative processing is computing that requires two or more 

distinct processors to complete a single transaction. Here programs 

interact and execute concurrently on different processors. 

 

11.8 COMMON OBJECT REQUEST BROKER 

         ARCHITECTURE  

 It is used to integrate distributed, heterogeneous business 

applications and data. The CORBA interface definition language 

(IDL) allows developers to specify language-neutral, object-

oriented interfaces for application and system components. IDL 

definitions are stored in an interface repository that offers object 

interfaces and services. For distributed enterprise computing, the 

interface repository is central to communication among objects 

located on different systems.  

 CORBA implements a communication channel through which 

applications can access object interfaces and request data and 

services.  

 The CORBA common object environment (COE) provides system 

level services such as life cycle management for objects accessed 



 

116 
 

 

NOTES 

Designing methods 

 

Self-Instructional Material 

 

through CORBA, event notification between objects and 

transaction and concurrency control.  

11.9 MICROSOFT’S ACTIVEX/DCOM  

 Microsoft’s Component Object Model (COM) and its successor, the 

distributed components object model (DCOM) are alternative to 

COR BA. DCOM was bundled with Windows NT 4.0. DCOM is an 

Internet and component strategy where ActiveX (formerly known 

as object linking and embedding or OLE) plays the role of DCOM 

object. DCOM is backed by web browser  

 

 

 

 

 

 

 

 

11.10 OBJECT –ORIENTED DATABASE 

           MANAGEMENT SYSTEMS 

 It is marriage of object oriented programming and database 

technology. The defined operations apply universally and are not 

dependent on the particular database application running at the 

moment. 

 The data types can be extended to support complex data such as 

multimedia by defining new object classes that have operations to 

support new kinds of information.  

 It should have object-oriented language properties and database 

requirements.  

11.10.1 Rules to make object-oriented system  

 The system must support complex objects. 

 Object identity must be supported  

 Objects must be encapsulated 

 System must support types or classes  

 System must support inheritance  

 System must avoid premature binding  

 System must be computationally complete  

 System must be extensible  

 It must be persistent, able to remember an object state  

 It must be able to manage large databases  

Check Your Progress 

7. Define logical database organization. 

8. Define client programs 

9. Define application server 

10. Define cooperative processing 

11. Give the system level services offered by CORBA 

 

 

 

 

 



 

117 
 

Designing methods 

 

NOTES 

Self-Instructional Material 

 

 It must accept concurrent users  

 Data query must be simple  

 The system must support complex objects. System must provide 

simple atomic types of objects (integers, characters, etc) from 

which complex objects can be built by applying constructors to 

atomic objects.  

 Object identity must be supported: A data object must have an 

identity and existence independent of its values.  

 Objects must be encapsulated: An object must encapsulate both a 

program and its data. 

 System must support types or classes: The system must support 

either the type concept or class concept  

 System must support inheritance: Classes and types can participate 

in a class hierarchy. Inheritance factors out shared code and 

interfaces.  

 System must avoid premature binding: This is also known as late 

binding or dynamic binding. It shows that the same method name 

can be used in different classes. The system must resolve conflicts 

in operation names at run time.  

 System must be computationally complete: Any computable 

function should be expressible in DML of the system, allowing 

expression of any type of operation.  

 System must be extensible: The user of the system should be able to 

create new types that have equal status to the system’s predefined 

types.  

 It must be persistent, able to remember an object state: System must 

allow the programmer to have data survive beyond the execution of 

the creating process for it to be reused in another process.  

 It must be able to manage large databases: System must manage 

access to the secondary storage and provide performance features 

such as indexing, clustering, buffering and query optimization.  

 It must accept concurrent users: System must allow multiple 

concurrent users and support notions of atomic, serializable 

transactions ,must be able to recover from hardware and software 

failures  

 Data query must be simple: System must provide some high-level 

mechanism for ad-hoc browsing of the contents of the database.  

11.11 OBJECT ORIENTED DATABASES VERSUS 

           TRADITIONAL DATABASES  

The responsibility of an OODBMS includes definition of the object 

structures, object manipulation and recovery, which is the ability to 

maintain data integrity regardless of system, network or media failure. The 

OODBMs like DBMSs must allow for sharing; secure concurrent 



 

118 
 

 

NOTES 

Designing methods 

 

Self-Instructional Material 

 

multiuser access; and efficient, reliable system performance. The objects 

are an “active” component in an object-oriented database, in contrast to 

conventional database systems, where records play a passive role. Another 

feature of object-oriented database is inheritance. Relational databases do 

not explicitly provide inheritance of attributes and methods. The objects 

are an active component in an object-oriented database, in contrast to 

conventional database systems, where records play a passive role. The 

relational database systems do not explicitly provide inheritance of 

attributes and methods while object-oriented databases represent 

relationships explicitly (openly, clearly). (Improvement in data access 

performance) Object oriented databases also differ from the traditional 

relational databases in that they allow representation and storage of data in 

the form of objects. (Each object has its own identity or object-ID) 

Object Identity 

Object oriented databases allow representation and storage of data in 

the form of objects. Each object has its own identity or object-ID (as 

opposed to the purely value oriented approach of traditional databases). 

The object identity is independent of the state of the object.  

11.12 DISTRIBUTED DATABASES  

Many modern databases are distributed databases, which imply that 

portions of the database reside on different nodes (computers) and disk 

drives in the network. Usually, each portion of the database is managed by 

a server, a process responsible for controlling access and retrieval of data 

from the database portion. 

Distributed and Cooperative Processing  

Distributed Processing means distribution of applications and 

business logic across multiple processing platforms. Distributed processing 

implies that processing will occur on more than one processor in order for 

a transaction to be completed. In other words, processing is distributed 

across two or more machines, where each process performs part of an 

application in a sequence. Example, in processing an order from a client, 

the client information may process at one machine and the account 

information then may process on a different machine.  

Cooperative processing is computing that requires two or more 

distinct processors to complete a single transaction. Cooperative 

processing is related to both distributed and client-server processing. 

Cooperative processing is a form of distributed computing in which two or 

more distinct processes are required to complete a single business 

transaction. Usually, these programs interact and execute concurrently on 

different processors. Cooperative processing also can be considered to be a 

style of distributed processing, if communication between processors is 

performed through a message passing architecture.  

Distributed Object Computing 

Distributed Object Computing (DOC) promises the most flexible 

client-server system, because it utilizes reusable software components that 

can roam anywhere on networks, run on different platforms, communicate 

with legacy applications by means of object wrappers. 



 

119 
 

Designing methods 

 

NOTES 

Self-Instructional Material 

 

Distributed objects are reusable software components that can be 

distributed and accessed by users across the network. These objects can be 

assembled into distributed applications. Distributed object computing 

introduces a higher level of abstraction into the world of distributed 

applications. Applications no longer consist of clients and servers but 

users, objects and methods. The user no longer needs to know which server 

process performs a given function. All information about the function is 

hidden inside the encapsulated object. A message requesting an operation 

is sent to the object, and the appropriate method is invoked.  

Distributed object computing resulted from the need to integrated 

mission-critical applications and data residing on systems that are 

geographically remote, sometimes from users and often from each other, 

and running on many different hardware platforms. The business have had 

to integrate applications and data by writing custom interfaces between 

systems, forcing develops to spend their time building and maintaining an 

infrastructure rather than adding new business functionality.  

11.13 OBJECT-RELATIONAL SYSTEMS  

The object-oriented development creates a fundamental mismatch 

between the programming model (objects) and the way in which existing 

data are stored (relational tables).  

To resolve the mismatch, a mapping tool between the application 

objects and the relational data must be established. Creating an object 

model from an existing relational database layout (schema) often is 

referred to as reverse engineering. Conversely, creating a relational schema 

from an existing object model often is referred to as forward engineering.  

Tools that can be used to establish the object-relational mapping 

processes have begun to emerge. The main process in relational and object 

integration is defining the relationships between the table structures 

(represented as schemata) in the relational database with classes 

(representing classes) in the object model. Example Sun Java Blend allows 

the developer access to relational data as java objects, thus avoiding the 

mismatch between the relational and object data model.  

11.14 OBJECT- RELATION MAPPING  

In a relational database, the schema is made up of tables, consisting 

of rows and columns, where each column has a name and a simple data 

type. In an object model, a table is a class, which has a set of attributes 

(properties or data members). Object classes describe behaviour with 

methods.  

A tuple (row) of a table contains data for a single entity that 

correlates to an object (instance of a class) in an object –oriented system. 

In addition, a stored procedure in a relation database may correlate to a 

method in an object-oriented architecture. A stored procedure is a module 

of precompiled SQL code maintained within the database that executes on 

the server to enforce rules the business has set about the data.  

Therefore, the mapping essential to object and relational integration 

are between a table and a class, between columns and attributes, between a 

row and an object, and between a stored procedure and a method. The 



 

120 
 

 

NOTES 

Designing methods 

 

Self-Instructional Material 

 

relational data maps to and from application objects, it must have at least 

the following mapping capabilities.  

Table-class mapping  

Table-multiple classes mapping  

Table-inherited classes mapping  

Tables- inherited classes mapping. 

The tool must describe both how the foreign key can be used to 

navigate among classes and instances in the mapped object model and how 

referential integrity is maintained. Referential integrity means making sure 

that a dependent table’s foreign key contains a value that refers to an 

existing valid tuple in another relation 

11.14.1 Table-class mapping  

Table-Class mapping is a simple one-to-one mapping of a table to a 

class and the mapping of columns in a table to properties in a class. In this 

mapping, a single table is mapped to a single class.  

 

 

 

 

 

11.14.2 Table-multiple classes mapping  

In the table-multiple classes mapping, a single table maps to multiple 

non inheriting classes. Two or more distinct, non inheriting classes have 

properties that are mapped to columns in a single table. At run time, a 

mapped table row is accessed as an instance of one of the classes, based on 

a column value in the table. 

 

 

 

 

 

 

 

 

 

Car Table 

Cost    color    make    model 

Car 

Cost 

Color 

Make 

model 

 

Person Table 

Name    address     custID    empID 

Employee 

Name 

Address 

empID 

Customer 

Name 

Address 

custID 

 



 

121 
 

Designing methods 

 

NOTES 

Self-Instructional Material 

 

11.14.3 Table – Inherited Classes Mapping 

In table-inherited classes mapping, a single table maps to many 

classes that have a common superclass. This mapping allows the user to 

specify the columns to be shared among the related classes. The superclass 

may be either abstract or instantiated.  

Tables – Inherited classes Mapping  

Another approach here is table-inherited classes mapping, which 

allows the translation of is a relationships that exist among tables in the 

relational schema into class inheritance relationships in the object model. 

In a relational database, an is-a relationship often is modeled by a primary 

key that acts as a foreign key to another table. In the object-model, is 

another term for an inheritance relationship 

 

 

11.15 MULTI DATABASE SYSTEMS  

• A different approach for integration object-oriented applications 

with relational data environments is multi database systems or 

heterogeneous database systems, which facilitate the integration 

of heterogeneous databases and other information sources. 

• Heterogeneous information systems facilitate the integration of 

heterogeneous information sources, where they can be structured 

(having regular schema), semi-structured and sometimes even 

unstructured. Some heterogeneous information systems are 

constructed on a global schema over several databases. So users 

can have the benefits of a database with a schema to access data 

stored in different databases and cross database functionality. 

Such heterogeneous information systems are referred to as 

federated multidatabase systems. 

Federated multidatabase systems provide uniform access to data 

stored in multiple databases that involve several different data models.  



 

122 
 

 

NOTES 

Designing methods 

 

Self-Instructional Material 

 

• A multidatabase system (MDBS) is a database system that resides 

unobtrusively on top of, existing relational and object databases 

and file systems (local database systems) and presents a single 

database illusion to its users. 

 

• The MDBS maintains a single global database schema and local 

database systems maintain all user data. 

• The schematic differences among local databases are handled by 

neutralization (homogenization), the process of consolidating the 

local schemata.  

• The MDBS translates the global queries and updates for dispatch 

to the appropriate local database system for actual processing, 

merges the results from them and generates the final result for the 

user.  

• MDBS coordinates the committing and aborting of global 

transactions by the local database systems that processed them to 

maintain the consistency of the data within the local databases.  

• An MDBS controls multiple gateways (or drivers). It manages 

local databases through gateways, one gateway for each local 

database.  

• Open Data Base Connective (ODBC) is an application 

programming interface that provides solutions to the multi 

database programming problem. It provides a vendor-neutral 

mechanism for independently accessing multiple database hosts.  

• ODBC and other APIs provide standard database access through a 

common client-side interface. It avoids the burden of learning 

multiple database APIs. Here one can store data for various 

applications or data from different sources in any database and 

transparently access or combing the data on an as needed basis. 

Details of back-end data structure are hidden from the user.  

11.15.1 ODBC  

• ODBC is similar to Windows print model, where the application 

developer writes to a generic printer interface and a loadable 

driver maps that logic to hardware-specific commands. 



 

123 
 

Designing methods 

 

NOTES 

Self-Instructional Material 

 

• This approach virtualizes the target printer or DBMS because the 

person with the specialized knowledge to make the application 

logic work with the printer or database is the driver developer and 

not the application programmer.  

• The application interacts with the ODBC driver manager, which 

sends the application calls (such as SQL statements) to the 

database.  

• The driver manager loads and unloads drivers, perform status 

checks and manages multiple connections between applications 

and data sources.  

 

 

 

 

 

 

 

 

 

 

 

 

11.16 DESIGNING ACCESS LAYER CLASSES  

• The main idea behind creating an access layer is to create a set of 

classes that know how to communicate with the place(s) where 

the data actually reside. Regardless of where the data reside, 

whether it be a file, relational database, mainframe, Internet, 

DCOM or via ORB, the access classes must be able to translate 

any data-related requests from the business layer into the 

appropriate protocol for data access. 

• These classes also must be able to translate the data retrieved back 

into the appropriate business objects.  

• The access layer’s main responsibility is to provide a link between 

business or view objects and data storage.  

• Three-layer architecture is similar to 3-tier architecture. The view 

layer corresponds to the client tier, the business layer to the 

application server tier and the access layer performs two major 

tasks: 

Access Layer tasks  

• Translate the request: The access layer must be able to translate 

any data related requests from the business layer into the 

appropriate protocol for data access.  

Check Your Progress 

12. What is the responsibility of an OODBMS? 

13. Define distributed databases. 

14. Define Distributed Object Computing. 

15. Define tuple. 

16. What is table class mapping? 

17. Give the advantage of heterogeneous information. 

18. Define ODBC. 

19. What is the purpose of driver manager? 

 

 

 

 

 

 



 

124 
 

 

NOTES 

Designing methods 

 

Self-Instructional Material 

 

• Translate the results: The access layer also must be able to 

translate the data retrieved back into the appropriate business 

objects and pass those objects back into the business layer.  

 

11.16.1 Advantage of this approach  

• Here design is tied to any base engine or distributed object 

technology such as CORBA or DCOM. Here we can switch easily 

from one database to another with no major changes to the user 

interface or business layer objects. All we need to change are the 

access classes’ methods.  

• The access layer design process consists of the following 

activities: 

• If a class interacts with nonhuman actor such as another system, 

database or the web, then the class automatically should become 

an access class.  

11.17 DESIGN THE ACCESS LAYER  

(1) For every business class identified, mirror the business class 

package.: For every business class identified and created, create one access 

class in the access layer package. Eg , if there are 3 business classes 

(class1, class2 and class3), create 3 access layer classes (class1DB, 

class2DB and class3DB)  

(2) Identify access layer class relationships (or) define the 

relationships.  

 Simplify classes and their relationships – main goal is to 

eliminate redundant classes and structures  

 Redundant classes: Do not keep 2 classes that perform similar 

translate request and translate results activities. Select one 

and eliminate the other.  

 Method classes: Revisit the classes that consist of only one or 

two methods to see if they can be eliminated or combined 

with existing classes.  

o Iterate and refine again.  

(3) Simplify classes and their relationships – main goal is to 

eliminate redundant classes and structures. In most cases , combine simple 

access class and simplify the super and subclass structures  

Redundant classes: Do not keep 2 classes that perform similar 

translate request and translate results activities. Select one and eliminate 

the other.  

Method classes: Revisit the classes that consist of only one or two 

methods to see if they can be eliminated or combined with existing classes.  

(4) Iterate and refine again.  

In this process, the access layer classes are assumed to store not only 

the attributes but also the methods. This can be done by utilizing an 



 

125 
 

Designing methods 

 

NOTES 

Self-Instructional Material 

 

OODBMS OR Relational data base Design the access layer process 

(approach-2)  

• Let methods to be stored in a program (eg: a compiled c++ program 

stored on a file) and store not only the persistent attributes 

(1) For every business class identified determine if class has 

persistent data. An attribute can be either transient or persistent (non 

transient ) 

(2) For every business class identified , mirror the business class 

package.: For every business class identified and created, create one access 

class in the access layer package. Eg , if there are 3 business classes 

(class1, class2 and class3), create 3 access layer classes (class1DB, 

class2DB and class3DB)  

(3) Identify access layer class relationships (or) define the 

relationships. 

(4) Simplify classes and their relationships – main goal is to 

eliminate redundant classes and structures. In most cases, combine simple 

access class and simplify the super and subclass structures  

Redundant classes: Do not keep 2 classes that perform similar 

translate request and translate results activities. Select one and eliminate 

the other.  

Method classes: Revisit the classes that consist of only one or two 

methods to see if they can be eliminated or combined with existing classes. 

 (5) Iterate and refine again. 

 

Process of creating access layer classes 



 

126 
 

 

NOTES 

Designing methods 

 

Self-Instructional Material 

 

 

11.18 INTRODUCTION TO VIEW LAYER  

View layer objects are more responsible for user interaction and 

these view layer objects have more relation with the user where business 

layer objects have less interaction with users. Another feature of view layer 

objects are they deal less with the logic. They help the users to complete 

their task in an easy manner.  

The Major responsibilities of view layer objects are  

1. Input – View Layer objects have to respond for user interaction. 

The user interface is designed to translate an action by the user (Eg. 

Clicking the button) in to a corresponding message.  

2. Output - Displaying or printing information after processing.  

View Layer Design Process:  

1. Macro Level UI Design Process  

a. Identify classes that interact with human actors  

b. A sequence/ collaboration diagram can be used to represent a clear 

picture of actor system interaction.  

c. For every class identified determine if the class interacts with the 

human actor. 

 If so i. Identify the view layer object for that class.  

  ii. Define the relationship among view layer objects.  

2. Micro Level UI Design Process  

a. Design of view layer objects by applying Design Axioms and 

Corollaries.  

b. Create prototype of the view layer interface. 

 3. Testing the usability and user satisfaction testing.  

4. Iterate and refine the above steps. 

11.19 USER INTERFACE DESIGN RULES 

UI Design Rule 1:  

Making the interface simple for complex application if the user 

interface is simple it is easy for the users to learn new applications. Each 

User Interface class should have a well define single purpose. If a user 

cannot sit before a screen and find out what to do next without asking 

multiple questions, then it says your interface is not simple.  

UI Design Rule 2:  

Making the Interface Transparent and Natural. The user interface 

should be natural that users can anticipate what to do next by applying 

previous knowledge of doing things without a computer. This rule says 

there should be a strong mapping and user’s view of doing things.  

 



 

127 
 

Designing methods 

 

NOTES 

Self-Instructional Material 

 

UI Design Rule 3:  

It allows users to be in control of the Software. The UI should make 

the users feel they are in control of the software and not the software 

controls the user. The user should play an active role and not a reactive 

role in the sense user should initiate the action and not the software.  

Some ways to make put users in control are  

1. Make the interface forgiving. 

2. Make the interface visual.  

3. Provide immediate feedback.  

4. Avoid Modes.  

5. Make the interface consistent.  

11.20 PURPOSE OF VIEW LAYER INTERFACE  

 The user interface can employ one or more windows. Windows are 

used for the following purposes 

 Forms and data entry windows 

 Dialog boxes 

11.21 GUIDELINES FOR DESIGNING FORMS AND 

          DATA ENTRY WINDOW  

 Identify the information which we want to display or change 

 Identify the task that users need to work with data on the 

form or data entry window 

Data entry tasks include 

 Navigating rows in a table, such as moving forward and 

backward , and going to the first and last record 

 Adding and deleting rows 

 Changing data in rows 

 Saving and cancelling the changes 

Dialog Boxes 

Dialog boxes display status information or ask users to supply 

information or make a decision before continuing with a task. 

11.22 GUIDELINES FOR DESIGNING DIALOG BOXES 

AND ERROR MESSAGES 

A dialog box provides an exchange of information or a dialog 

between the user and the application Dialog boxes generally appear after a 

particular Menu item or a Command button pressed Error message.  If we 

wrongly enter the date in the entry form then the message show the format 

for date (DD/MM/YYYY) 

 



 

128 
 

 

NOTES 

Designing methods 

 

Self-Instructional Material 

 

11.23 GUIDELINES FOR THE COMMAND BUTTONS  

Layout Position of the command buttons is very important 

 Bottom 

 Align top right 

 Align left border is very popular in web interface 

11.24 APPLICATION WINDOWS (MAIN WINDOW) 

An application window is a container of application objects or icons. 

It contains an entire application with which users can interact. 

Consist of Frame or border, Title bar, Scroll bars, Menu bar, Toll bar 

Status bar. 

 

 

 

 

11.25 ANSWERS TO CHECK YOUR PROGRESS 

          QUESTIONS 

1. A Database Management System is a set of programs that enables 

the creation and maintenance of a collection of related data. 

2. The purpose of DBMS is to provide reliable, persistent data storage 

and mechanisms for efficient, convenient data access and retrieval.  

3. A database model is a collection of logical constructs used to 

represent the data structure and data relationships within the 

database. 

4. A primary key is a combination of one or more attributes whose 

value unambiguously (clearly) locates each row in the table.  

5. DDL is the language used to describe the structure of and 

relationships between objects stored in a database. 

6. A Data Manipulation Language (DML) is the language that allows 

users to access and manipulate (such as create, save or destroy) data 

organizations. 

7. Logical database organization refers to the conceptual view of 

database structure and the relationships within the database. 

8. Client programs manage user interface portion of the application, 

validate data entered by the user, dispatch requests to server 

program and executes business logic. 

9. Application servers need not to be database centric. They may 

serve any of user needs such as sending mails, regulating 

download.  

Check Your Progress 

20. What is a dialog box? 

  21. Define application window. 

 

 

 

 

 

 

 



 

129 
 

Designing methods 

 

NOTES 

Self-Instructional Material 

 

10. Cooperative processing is computing that requires two or more 

distinct processors to complete a single transaction. Here programs 

interact and execute concurrently on different processors  

11. The CORBA common object environment (COE) provides system 

level services such as life cycle management for objects accessed 

through CORBA, event notification between objects and 

transaction and concurrency control.  

12. The responsibility of an OODBMS includes definition of the object 

structures, object manipulation and recovery, which is the ability to 

maintain data integrity regardless of system, network or media 

failure. 

13. Distributed databases imply that portions of the database reside on 

different nodes (computers) and disk drives in the network. 

14. Distributed Object Computing (DOC) utilizes reusable software 

components that can roam anywhere on networks, run on different 

platforms, communicate with legacy applications by means of 

object wrappers. 

15. A tuple (row) of a table contains data for a single entity that 

correlates to an object (instance of a class) in an object –oriented 

system. 

16. Table-Class mapping is a simple one-to-one mapping of a table to a 

class and the mapping of columns in a table to properties in a class. 

17. Heterogeneous information systems facilitate the integration of 

heterogeneous information sources, where they can be structured 

(having regular schema), semi-structured and sometimes even 

unstructured. 

18. Open Data Base Connectivity (ODBC) is an application 

programming interface that provides solutions to the multi database 

programming problem. 

19. The driver manager, loads and unloads drivers, performs status 

checks and manages multiple connections between applications and 

data sources.  

20. Dialog boxes display status information or ask users to supply 

information or make a decision before continuing with a task. 

21. An application window is a container of application objects or 

icons. It contains an entire application with which users can 

interact. 

11.26 SUMMARY  

 A package groups and manages the modeling elements, such as 

classes, their associations, and their structures.  

 Packages themselves may be nested within other packages.  

 A package may contain both other packages and ordinary model 

elements.  



 

130 
 

 

NOTES 

Designing methods 

 

Self-Instructional Material 

 

 Persistence refers to the ability of some objects to outlive the 

programs that created them.  

 The persistent data are those data that exist beyond the lifetime of 

the creating process.  

 Schema or meta-data contains a complete definition of the data 

formats, such as the data structures, types and constraints.  

 The meta-data are usually encapsulated in the application 

programs themselves.  

 A concurrency control policy dictates what happens when 

conflicts arise between transactions that attempt access to the 

same object and how these conflicts are to be resolved.  

 A database model is a collection of logical constructs used to 

represent the data structure and data relationships within the 

database.  

 The different database models are, Hierarchical model Network 

model Relational model. 

 Open database connectivity (ODBC) is an application 

programming interface that provides solutions to the 

multidatabase programming problem.  

 A multi database system (MDBS) is database systems that resides 

unobtrusively on top of existing relational and object databases, 

and file systems and presents a single database illusion to its 

users. 

 Common object request broker architecture (CORBA) is a 

standard proposed as a means to integrate distributed 

heterogeneous business applications and data. 

 Distributed object computing (DOC) utilizes reusable software 

components that can roam anywhere on networks, run on different 

platforms, communicate with legacy applications by means of 

object wrappers, and manage themselves and the resources.  

 Cooperative processing is computing that requires two or more 

distinct processors to complete a single transaction.  

 Data definition language (DDL) is the language used to describe 

the structure of and relationships between objects stored in a 

database 

 View layer objects are more responsible for user interaction and 

these view layer objects have more relation with the user where 

business layer objects have less interaction with users. 

 The user interface can employ one or more windows. 

 An application window is a container of application objects or 

icons. 

11.27 KEYWORDS 

 Persistence 



 

131 
 

Designing methods 

 

NOTES 

Self-Instructional Material 

 

 Schema 

 DDL 

 DML 

 ODBC 

 CORBA 

 Client Server Computing 

 Distributed Object Computing  

11.28 REVIEW QUESTIONS 

1. Differentiate between transient data and persistent data?  

2. What is a DBMS?  

3. What is a relational database? Explain tuple, primary key and 

foreign key  

4. What is a database schema? Differentiate between schema and 

meta-data  

5. What is a DDL? 

6. What is a distributed database?  

7. What is concurrency control?  

8. Define shareability  

9. What is a transaction?  

10. What is concurrency policy? 

11. What is a query?  

12. Define client-server computing  

13. Name the different types of servers. Briefly describe. 

14. Why is DOC so important in the computing world? 

15. Describe CORBA, ORB and DCOM  

16. What is an OODBMS? Differentiate between an OODBMS and 

object oriented programming. 

17. Differentiate between forward and reverse engineering  

18. Describe a federated multidatabase system  

19. Describe the process of creating the access layer classes 

20. Define object store and persistence.  

21. Write a note on View layer. 

11.29 FURTHER READINGS 

1. Object Oriented Analysis and Design using UML, by Rational 

Software Corporation (2002)  Bahrami, A.(1999). 

2. Object Oriented Systems Development, using the unified 

modeling language, McGraw-Hill 



 

132 
 

 

NOTES 

Managing Analysis and 

Design 

 

Self-Instructional Material 

 

UNIT XII – MANAGING ANALYSIS 

AND DESIGN 

Structure 

12.0 Introduction 

12.1 Objectives 

12.2 Quality Assurance tests 

12.3 Testing Strategies 

12.3.1 Black box testing 

12.3.2 White box testing 

12.3.3 Top Down testing 

12.3.4 Bottom up testing 

12.4 Impact of Object Orientation on Testing 

12.4.1 Reusability of tests 

 12.5 Answers to check your progress questions 

12.6 Summary 

12.7 Keywords 

12.8 Review Questions 

12.9 Further Readings  

12.0 INTRODUCTION 

To develop a strong system, we need a high level of confidence that 

 Each component will behave correctly 

 Collective behaviour is correct 

 No incorrect behaviour will be produced 

The elimination of the syntactical bug is the process of debugging while detection 

and elimination of the logical bug is the process of testing. 

12.1 OBJECTIVES 

After going through this unit, you will be able to:  

 Understand about quality assurance tests 

 Understand about testing strategies 

 Describe the impact of testing 

12.2 QUALITY ASSURANCE TESTS 

Finding out which is wrong and correcting the code to eliminate the errors or bugs 

is called debugging process. Some of the kinds of errors are 

Language errors: It is due to incorrectly constructed code. These are easiest type 

of errors. No need for debugging tools.  

 Runtime errors: These are detected when the program is run.  



 

133 
 

Managing Analysis and Design 

 

NOTES 

Self-Instructional Material 

 

 Logic errors: This occurs when the code produce incorrect results.  

 Quality assurance testing are divided into two categories 

 Error based testing – Search a given class’s method for particular clues of  

interest 

 Scenario based testing – Also called usage-based testing. Concentrates 

on what the user does, not what the product does. 

12.3 TESTING STRATEGIES 

12.3.1 Black box testing 

 An approach to testing where the program is considered as a 

‘black-box’ 

 The program test cases are based on the system specification  

 Test planning can begin early in the software process 

 In a black box, the test item is treated as "black" whose logic is 

unknown. 

 All that's known is what goes in and what comes out, the input 

and output 

 Black box test works very nicely in testing objects in an O-O 

environment. 

12.3.2 White box testing 

 White box testing assumes that specific logic is important, and 

must be tested to guarantee system’s proper functioning. 

 One form of white box testing is called path testing 

 It makes certain that each path in a program is executed at least 

once during testing. 

Two types of path testing are: 

 Statement testing coverage – Tests every statement in the objects 

method by executing it at least once 

 Branch testing coverage – Perform tests to confirm every branch 

alternative has been executed at least once. 

12.3.3 Top Down testing 

 It assumes that the main logic of the application needs more 

testing than supporting logic. 

 Finds critical design errors in testing process and improves the 

quality of software 

 Supports testing the user interface and event driven systems 

12.3.4 Bottom up testing 

• It assumes that individual programs and modules are fully 

developed as standalone processes. 



 

134 
 

 

NOTES 

Managing Analysis and 

Design 

 

Self-Instructional Material 

 

• These modules are tested individually, and then combined for 

integration testing. 

12.4 IMPACT OF OBJECT ORIENTATION ON TESTING 

The impacts are as follows   

 Some types of errors could become less plausible  

 Some types of errors could become more plausible 

 Some new types of errors might appear 

12.4.1 Reusability of tests 
  

Marick says that the simpler is a test, the more likely it is to be 

reusable in sub-classes. Simple tests find only faults. Complex tests find 

faults and also stumble across others.  

 

What are the path testing’s available in white box testing? 

 

 

 

 

 

 

 

 

 

12.5 ANSWERS TO CHECK YOUR PROGRESS 

        QUESTIONS 

1. Language errors are due to incorrectly constructed code. These are 

easiest type of errors. No need for debugging tools. 

2. Scenario based testing is also called as usage-based testing; it 

concentrates on what the user does, not what the product does. 

3. Statement testing coverage and Branch testing coverage are the 

path testing’s in white box testing. 

12.6 SUMMARY  

 The elimination of the syntactical bug is the process of debugging. 

 Detection and elimination of the logical bug is the process of testing. 

 Quality assurance testing is divided into two categories i) Error based 

testing ii) Scenario based testing 

 White box testing assumes that specific logic is important, 

and must be tested to guarantee system’s proper functioning. 

 The concept of black box testing is used to represent a system 

whose inside workings are not available 

 A top down strategy can detect the serious flaws early in the 

implementation. 

Check Your Progress 

1. Define language errors. 

2. What is scenario based testing? 

3. What are the path testing’s available in white box 

testing? 

 

  

 

 

 

 

 

 

 



 

135 
 

Managing Analysis and Design 

 

NOTES 

Self-Instructional Material 

 

12.7 KEYWORDS 

 Testing 

 Debugging 

 Reusability 

12.8 REVIEW QUESTIONS 

1. Why quality assurance is needed? 

2. What are the kinds of errors you might encounter when you 

run your program? 

3. Define Black box testing 

4. What is white box testing? 

5. Explain top down testing. 

6. What is Bottom-up Testing? 

7. Summarize the impact of an object orientation on testing. 

8. What are the kinds of errors you might encounter when you 

run your program? 

9. Define Error based testing. 

12.9 FURTHER READINGS  

1. Object Oriented Analysis and Design using UML, by Rational 

Software Corporation (2002)  Bahrami, A.(1999). 

2. Object Oriented Systems Development, using the unified 

modeling language, McGraw-Hill. 



 

136 
 

 

NOTES 

Coding and Maintenance 

 

Self-Instructional Material 

 

BLOCK 5 : UNIT XIII 

CODING AND MAINTENANCE 

Structure 

13.0 Introduction 

13.1 Objectives 

13.2 Coding and Maintenance 

13.2.1 Maintenance 

13.3 Object-Oriented Metrics 

13.3.1 Project Metrics 

13.3.2 Product Metrics 

13.3.3 Process Metrics 

13.4 Answers to check your progress questions 

13.5 Summary 

13.6 Keywords  

13.7 Review Questions 

13.8 Further readings 

 

13.0 INTRODUCTION 

Most developers are well aware of the concepts of object oriented 

development, which originates from entire software development life 

cycle.  The Software development life cycle includes requirements, 

planning, design, coding, testing, deployment and maintenance and so on. 

Software maintenance is widely accepted part of SDLC now a days. It 

stands for all the modifications and updations done after the delivery of 

software product. 

13.1 OBJECTIVES 

After going through this unit, you will be able to:  

 Understand about coding 

 Understand about maintenance 

 Describe object oriented metrics 

13.2 CODING AND MAINTENANCE 

 OOAD artifacts feed into implementation model in a traceable 

manner 

 Some tools generate partial code from UML 



 

137 
 

Coding and Maintenance 

 

NOTES 

Self-Instructional Material 

 

 But programming not trivial generation! 

 Programmers make changes as the work out the details 

 Therefore, Expect and plan for change and deviation from design 

during programming 

 Write source code for: 

 Class and interface definitions 

 Method definitions 

 Work from OOA/D artifacts 

 Create class definitions for Domain Class Diagrams 

(DCDs) 

 Create methods from Interaction diagrams 

13.2.1 Maintenance 

There are four types of maintenance, namely, corrective, adaptive, 

perfective, and preventive.  

Corrective maintenance is concerned with fixing errors that are 

observed when the software is in use.  

Adaptive maintenance is concerned with the change in the software 

that takes place to make the software adaptable to new environment such 

as to run the software on a new operating system.  

Perfective maintenance is concerned with the change in the software 

that occurs while adding new functionalities in the software.  

Preventive maintenance involves implementing changes to prevent 

the occurrence of errors. The distribution of types of maintenance by type 

and by percentage of time consumed. 

Corrective Maintenance 

It deals with the repair of faults or defects found in day-today system 

functions. A defect can result due to errors in software design, logic and 

coding. Design errors occur when changes made to the software are 

incorrect, incomplete, wrongly communicated or the change request is 

misunderstood. Logical errors result from invalid tests and conclusions, 

incorrect implementation of design specifications, faulty logic or 

incomplete test of data. All these errors, referred to as residual errors.  In 

the event of a system failure due to an error, actions are to be taken to 

restore the operation of the software system. Corrective maintenance 

approaches to locate the original specifications in order to determine what 

the system was originally designed to do. Corrective maintenance accounts 

for 20% of all the maintenance activities. 

Adaptive Maintenance 

It is the implementation of changes in a part of the system, which has 

been affected by a change that occurred in some other part of the system. 

Adaptive maintenance consists of adapting software to changes in the 

environment such as the hardware or the operating system. Adaptive 

maintenance accounts for 25% of all the maintenance activities. 

http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system


 

138 
 

 

NOTES 

Coding and Maintenance 

 

Self-Instructional Material 

 

 

Perfective Maintenance 

It deals with implementing new or changed user requirements. It 

involves making functional enhancements to the system in addition to the 

activities to increase the systems’ performance even when the changes 

have not been suggested by faults. This includes enhancing both the 

function and efficiency of the code and changing the functionalities of the 

system as per the users changing needs. Perfective maintenance accounts 

for 50% of all the maintenance activities. 

Preventive Maintenance 

It involves performing activities to prevent the occurrence of errors. 

It tends to reduce the software complexity thereby improving program 

understandability and increasing software maintainability. It comprises 

documentation updating, code optimization and code restructuring. 

Documentation updating involves modifying the documents affected by the 

changes in order to correspond to the present state of the system. Code 

optimization involves modifying programs for faster execution or efficient 

use of storage space. Code restructuring involves transforming the program 

structure for reducing the complexity in source code and making it easier 

to understand. Preventive maintenance accounts for 5% of all the 

maintenance activities. 

13.3 OBJECT-ORIENTED METRICS 

Metrics can be broadly classified into three categories: project 

metrics, product metrics, and process metrics. 

13.3.1 Project Metrics 

Project Metrics enable a software project manager to assess the status 

and performance of an ongoing project. The following metrics are 

appropriate for object-oriented software projects  

 Number of scenario scripts 

 Number of key classes 

 Number of support classes 

 Number of subsystems 

13.3.2 Product Metrics 

Product metrics measure the characteristics of the software product 

that has been developed. The product metrics suitable for object-oriented 

systems are  

Methods per Class − It determines the complexity of a class. If all 

the methods of a class are assumed to be equally complex, then a class 

with more methods is more complex and thus more susceptible to errors. 

 Inheritance Structure − Systems with several small inheritance 

lattices are more well–structured than systems with a single large 

inheritance lattice. As a thumb rule, an inheritance tree should not 



 

139 
 

Coding and Maintenance 

 

NOTES 

Self-Instructional Material 

 

have more than 7 (± 2) number of levels and the tree should be 

balanced. 

 Coupling and Cohesion − Modules having low coupling and 

high cohesion are considered to be better designed, as they permit 

greater reusability and maintainability. 

 Response for a Class − It measures the efficiency of the methods 

that are called by the instances of the class. 

13.3.3 Process Metrics 

Process metrics help in measuring how a process is performing. They 

are collected over all projects over long periods of time. They are used as 

indicators for long-term software process improvements. Some process 

metrics are 

 Number of KLOC (Kilo Lines of Code) 

 Defect removal efficiency 

 Average number of failures detected during testing 

 Number of latent defects per KLOC 

 

 

 

 

 

 

 

 

 

 

13.4 ANSWERS TO CHECK YOUR PROGRESS 

        QUESTIONS 

1. There are four types of maintenance namely, corrective, adaptive, 

perfective and preventive. 

2. Adaptive maintenance is the implementation of changes in a part of 

the system, which has been affected by a change that occurred in 

some other part of the system. 

3. Code optimization involves modifying programs for faster 

execution or efficient use of storage space. 

4. Code restructuring involves transforming the program structure for 

reducing the complexity in source code and making it easier to 

understand. 

5. Project Metrics enable a software project manager to assess the 

status and performance of an ongoing project. 

Check Your Progress 

1. List down the types of maintenance. 

2. What is the purpose of adaptive maintenance? 

3. Define code optimization. 

4. Define code restructuring. 

5. Define project metrics. 

6. What is process metrics? 

 

 

  

 

 

 

 

 

 

 



 

140 
 

 

NOTES 

Coding and Maintenance 

 

Self-Instructional Material 

 

6. Process metrics help in measuring how a process is performing. 

They are collected over all projects over long periods of time. 

13.5 SUMMARY 

 There are four types of maintenance, namely, corrective, adaptive, 

perfective, and preventive.  

 Corrective maintenance is concerned with fixing errors that are 

observed when the software is in use.  

 Adaptive maintenance is concerned with the change in the 

software that takes place to make the software adaptable to new 

environment such as to run the software on a new operating 

system.  

 Perfective maintenance is concerned with the change in the 

software that occurs while adding new functionalities in the 

software.  

 Preventive maintenance involves implementing changes to 

prevent the occurrence of errors. 

 Project Metrics enable a software project manager to assess the 

status and performance of an ongoing project. 

 Product metrics measure the characteristics of the software 

product that has been developed. 

 Process metrics help in measuring how a process is performing. 

13.6 KEYWORDS 

 DCD 

 Maintenance 

 Design errors 

 Logical errors 

 Project metrics 

13.7 REVIEW QUESTIONS 

1. What is the purpose of maintenance? 

2. Define corrective maintenance. 

3. What is adaptive maintenance? 

4. Write a note on metrics. 

5. Describe the various types of maintenance. 

 

13.8 FURTHER READINGS 

1. An overview of Object Oriented Design Metrics, Muktamyee 

Sarker, 2005 

2. Object Oriented Analysis and Design using UML, by Rational 

Software Corporation (2002)  Bahrami, A.(1999). 

http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system
http://ecomputernotes.com/fundamental/disk-operating-system/what-is-operating-system


 

141 
 

Case study 

 

NOTES 

Self-Instructional Material 

 

UNIT XIV – CASE STUDY 

Structure 

14.0 Introduction 

14.1 Objective 

14.2 Foundation Class Library 

 14.2.1 Library Management system 

14.3 Client server computing 

 

14.0 INTRODUCTION 

The aim of a case study is to teach the student to observe the issue 

professionally and solve the problem of the definite case successfully. The 

cause and effect of the problem which has occurred and focus on the 

solution of the matter with the help of the reliable and valid methods. The 

success of the case study depends on the quality of the chosen solution. 

14.1 OBJECTIVE 

After going through this unit, you will be able to:  

 Understand what a case study is 

 Understand a particular topic clearly with cause and solution 

 Understand the methods available to reach a solution 

 

14.2 FOUNDATION CLASS LIBRARY 

14.2.1. Library Management system  

The case study is library management software for the purpose of 

monitoring and controlling the transactions in a library. This case study on 

the library management system gives us the complete information about 

the library and the daily transactions done in a Library. We need to 

maintain the record of news and retrieve the details of books available in 

the library which mainly focuses on basic operations in a library like 

adding new member, new books, and up new information, searching books 

and members and facility to borrow and return books. It features a familiar 

and well thought-out, an attractive user interface, combined with strong 

searching, insertion and reporting capabilities. The report generation 

facility of library system helps to get a good idea of which are borrowed by 

the members, makes users possible to generate hard copy. 

 

The following are the brief description on the functions achieved through 

this case study: 



 

142 
 

 

NOTES 

Case study 

 

Self-Instructional Material 

 

 

End-Users: 

•Librarian: To maintain and update the records and also to cater the needs 

of the users. 

•Reader: Need books to read and also places various requests to the 

librarian. 

•Vendor: To provide and meet the requirement of the prescribed books. 

 

Class Diagram 

 

Classes identified are  

Library 

Librarian 

Books Database 

User 

Vendor 

 

 

 

 

 

 

 

 

 

 

 

Actors vs Use Cases  

 

Librarian 

•Issue a book 

•Update and maintain records 

•Request the vendor for a book 

•Track complaints 

 

User 

•Register 

•Login 

 
Library 

Location 

Librarian id 

Books database 

Title 

Author 

Book id 

+update() 

 

Librarian 

 

Details 

Librarian id 

+Issue status() 

+Complaint resolution() 

+tracking() 

+calculate fine() 

+vendor request() 

+payment() 

User 

 

Details 

User id 

 

+search() 

+request() 

+complaints() 

+pay fine() 

 

Vendor 

 

Book details 

 

+search() 

+supply book() 

+payment 

details() 

General user 

+register() 

Registered user 

+login() 

+history() 

+unregister() 



 

143 
 

Case study 

 

NOTES 

Self-Instructional Material 

 

•Search a book 

•Request for isse 

•View history 

•Request to the Librarian 

•Unregister 

 

Books Database 

•Update records 

•Show books status 

 

Vendors 

•Provide books to the library 

•Payment acknowledgement 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sequence Diagram 

Sequence diagram for searching a book and issuing it as per the 

request by the user from the librarian: 

  

Vendor 

 

 

 

General User 

 

 

 

  User                    books 

database 

         

  

 

                   

               Librarian   

 

Registered user 

 

Request 

payment 

Supply books 

register 

login 

search 

Request for 

issue 

View previous 

logs 

feedback 

unregister 

Update 

record 

Issue a book 

Request book from 

vendor 

Maintain 

record 

Track complaints 

Update 

book 

status 

Maintai

n book 

databa

se 



 

144 
 

 

NOTES 

Case study 

 

Self-Instructional Material 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Collaboration Diagram for searching a book and issuing it as per the 

request by the user from the librarian: 

  

 

 

 

1. Login                               1.1 authenticate 

                                                                                                                      1.1.1 Acknowledge 

                            1.1.1.1 Logged in or wrong password 

 

                                   2. Enter book name 

2.1 search for the book 

2.1.1 Acknowledge the search 

                                 2.1.1.1 Book found or not 

        3. Request for issue 

         3.1 Book status : issued 

3.2 book issued 

 

4. logout 

4.1 logout successful 

 

 

User Library computer Books database 

    1.1 Authenticate 

2.1 Search for the book 

3.1 Book status:issued 

 

 

 

1.1.1.1 logged in or wrong password 

2.1.1.1 book found or not   1.1.1 Acknowledge 

3.2 book issued            2.1.1 acknowledge of the search 

4.1 logout successful 

 

 

 

1. login 

2. enter book name 

3. request for issue 

4. logout 

Library 

computer 

Books database 

User 



 

145 
 

Case study 

 

NOTES 

Self-Instructional Material 

 

Activity Diagram 

Activities: 

User Login and Authentication 

Search book operation for Reader 

Acknowledge and Issue books to the users by the Librarian 

Provide books requested by the Librarian from the Vendor 

Bill payment from the Librarian to the Vendor 

Status of the books updated in the Books Database 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

                Start 

 

 

 

    No  Yes 

 

      Valid user 

                 

 

 

 

 

 

                                                                                               No                                                     

Book 

                                                                                                 Yes                                                   

found 

            Updated                 
No 

         

                                   

Yes 

    

        

login 

Provi

de 

book 

Payme

nt 

 bill 

Track 

complai

nts 

Book 

status 

updat

e 

Reque

st to 

librari

an 

Reque

st for 

issue 

Search 

book 

Pay bill to 

vendor 

logout 



 

146 
 

 

NOTES 

Case study 

 

Self-Instructional Material 

 

State Chart Diagram 

States: 

Authentication 

Successfully logged on or re-login 

Search for a book (user) / request the vendor (librarian) / provide the 

requested book (vendor) 

Receive acknowledgement 

Logged off / re-search / new function 

 

Transitions: 

Authenticate ---> Logged in 

Logged in ---> Search <---> Acknowledgement 

Logged in ---> Request Vendor <---> Provide Book <---> 

Acknowledgement 

Logged in ---> Provide Book <---> Acknowledgement 

Acknowledgement ---> Logged off 

 

 

 

 

 

 

Component Diagram 

Components: 

 

Register Page (visitor / vendor) 

Login Page (user / librarian / vendor) 

Search Page (user / librarian / vendor) 

Request Vendor Page (librarian) 

Request Book Issue Page (user / vendor) 

Issue Status Page (librarian) 

Make Payment Page (librarian / vendor)Provide Books Page (librarian) 

Logout Page (user / librarian / vendor) 

  

 

Initial node                   finalnode 

 

 

authenticate Logged 

in 

Request 

vendor 

Provide 

book 

Logged 

off state 

search Acknowledged 

state 



 

147 
 

Case study 

 

NOTES 

Self-Instructional Material 

 

 

 

 

 

 

 

 

 

 

Deployment Diagram 

Systems Used: 

 

Local Consoles / Computers for login and search purposes by users, 

librarian and vendors. 

Library LAN Server interconnecting all the systems to the Database. 

Internet to provide access to Venodors to supply the requested books by 

the Librarian 

Vendor Server to maintain the records of the requests made by the librarian 

and books provided to the library. 

 

 

 

 

 

 

  

Authenticate from library database 

 

         

   

          

 

        Search from books database     update the         database 

 

 

 

 

           Update vendor database 

<<component>> 

Login page.jsp 

<<component>> 

Searchpage.jsp 

<<component>> 

Providebookspage.jsp 

<<component>> 

Register page.jsp 

<<component>> 

Requestvendorpage.jsp 

<<component>> 

Requestpage.jsp 

<<component>> 

Makepaymentpage.js

p 

<<component>> 

Issue page.jsp 

<<component>> 

Logout page.jsp 

 

Console 1 Console 2 Console 3 Console n 

Library LAN server 

<<component>> 

Internet 

Vendor server 



 

148 
 

 

NOTES 

Case study 

 

Self-Instructional Material 

 

14.3 CLIENT / SERVER COMPUTING 

Client server computing is the process of the creation of the 

special architectural patterns which maintain the functioning of the varied 

networks and connection of their components. The major components of 

client server computing are: the sets of servers which are the sources of 

information for everyone who applies for their help; the sets of clients, 

which take advantage of the services of servers; the networks which 

maintain the constant and quality connection between clients and servers 

and their interrelation. The client/server architecture is quite interesting, 

because clients and servers are not connected with anything; they function 

independently from one another. The client can use the services of 

different servers; they can use the one server but have no idea about the 

existence of the other one. The server is not bound with the client and can 

serve for a great number of clients simultaneously. 

The client is able to apply for the services of various servers and 

possess no idea about the existence about other clients. The model of client 

server computing is defined according to the distribution of the duties of 

clients and servers. There are three levels of operations: the level of 

presentation of the information (the user’s interface and the server’s set of 

commands); the application level (the processing of the information); the 

level of data management (data storage and the access to the information). 

The history of the creation client/server architecture dates back to the 

1960s and 1970s when the development of the Internet and computer 

networks found its birth. Since that time client server computing has been 

developing with constant alterations and improvement. Client server 

computing is the important activity which enables the regular functioning 

of the Internet and the student is able to analyze the problem in the 

appropriate way.



 

149 
 

Model Question Paper 

 

NOTES 

DISTANCE EDUCATION 

MCA DEGREE EXAMINATION 

OBJECT ORIENTED ANALYSIS AND DESIGN 

MODEL QUESTION PAPER 
Time: 3 Hours     Maximum Marks: 75 

PART – A (10 x 2 = 20) 

ANSWER ALL QUESTIONS 

1. What is the purpose of Object orientation? 

2. Define State. 

3. Define Framework. 

4. Give the difference between user and actor. 

5. What is association? 

6. How do you identify attributes? 

7. State different types of coupling. 

8. Expand: CORBA 

9. Give the advantages of access layer. 

10. What is the impact of testing? 

 

PART – B (5 x 5 = 25) 

ANSWER ALL QUESTIONS 

11. a. Write a note on Object basics. 

Or 

b. Explain the relationship among classes. 

12. a. Elucidate Booch methodology. 

Or 

b. Explain Use case model. 

13. a. Explicate Noun phrase approach. 

Or 

b. Describe Super- Sub class relationships. 

      14. a. Explain Database model. 

   Or 

b. Write a note on Distributed databases & Client 

server computing. 

       15. a. Elucidate testing strategies. 

   Or 

     b. Write a note on types of Maintenance. 

  

PART-  C (3 x 10 = 30) 

ANSWER ANY THREE QUESTIONS 

 16. Describe the elements of object model. 

 17. Explicate software development life cycle. 

 18. Write a note on UML class diagram. 

 19. Write a brief note on Corollaries. 

 20. Explain in detail Object relation mapping. 


